rigidity result
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 28)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Netta Engelhardt ◽  
Åsmund Folkestad

Abstract We prove a positive volume theorem for asymptotically AdS spacetimes: the maximal volume slice has nonnegative vacuum-subtracted volume, and the vacuum-subtracted volume vanishes if and only if the spacetime is identically pure AdS. Under the Complexity=Volume proposal, this constitutes a positive holographic complexity theorem. The result features a number of parallels with the positive energy theorem, including the assumption of an energy condition that excludes false vacuum decay (the AdS weak energy condition). Our proof is rigorously established in broad generality in four bulk dimensions, and we provide strong evidence in favor of a generalization to arbitrary dimensions. Our techniques also yield a holographic proof of Lloyd’s bound for a class of bulk spacetimes. We further establish a partial rigidity result for wormholes: wormholes with a given throat size are more complex than AdS-Schwarzschild with the same throat size.


Author(s):  
Jonas Beyrer ◽  
Elia Fioravanti

AbstractMany geometric structures associated to surface groups can be encoded in terms of invariant cross ratios on their circle at infinity; examples include points of Teichmüller space, Hitchin representations and geodesic currents. We add to this picture by studying cocompact cubulations of arbitrary Gromov hyperbolic groups G. Under weak assumptions, we show that the space of cubulations of G naturally injects into the space of G-invariant cross ratios on the Gromov boundary $$\partial _{\infty }G$$ ∂ ∞ G . A consequence of our results is that essential, hyperplane-essential, cocompact cubulations of hyperbolic groups are length-spectrum rigid, i.e. they are fully determined by their length function. This is the optimal length-spectrum rigidity result for cubulations of hyperbolic groups, as we demonstrate with some examples. In the hyperbolic setting, this constitutes a strong improvement on our previous work [4]. Along the way, we describe the relationship between the Roller boundary of a $$\mathrm{CAT(0)}$$ CAT ( 0 ) cube complex, its Gromov boundary and—in the non-hyperbolic case—the contracting boundary of Charney and Sultan. All our results hold for cube complexes with variable edge lengths.


2021 ◽  
Vol 47 (1) ◽  
pp. 89-102
Author(s):  
Keijo Mönkkönen

  If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.


2021 ◽  
pp. 1-17
Author(s):  
Yong Fang

A Finsler manifold is said to be geodesically reversible if the reversed curve of any geodesic remains a geometrical geodesic. Well-known examples of geodesically reversible Finsler metrics are Randers metrics with closed [Formula: see text]-forms. Another family of well-known examples are projectively flat Finsler metrics on the [Formula: see text]-sphere that have constant positive curvature. In this paper, we prove some geometrical and dynamical characterizations of geodesically reversible Finsler metrics, and we prove several rigidity results about a family of the so-called Randers-type Finsler metrics. One of our results is as follows: let [Formula: see text] be a Riemannian–Finsler metric on a closed surface [Formula: see text], and [Formula: see text] be a small antisymmetric potential on [Formula: see text] that is a natural generalization of [Formula: see text]-form (see Sec. 1). If the Randers-type Finsler metric [Formula: see text] is geodesically reversible, and the geodesic flow of [Formula: see text] is topologically transitive, then we prove that [Formula: see text] must be a closed [Formula: see text]-form. We also prove that this rigidity result is not true for the family of projectively flat Finsler metrics on the [Formula: see text]-sphere of constant positive curvature.


Author(s):  
Ezequiel Barbosa ◽  
Franciele Conrado

In this work, we consider oriented compact manifolds which possess convex mean curvature boundary, positive scalar curvature and admit a map to $\mathbb {D}^{2}\times T^{n}$ with non-zero degree, where $\mathbb {D}^{2}$ is a disc and $T^{n}$ is an $n$ -dimensional torus. We prove the validity of an inequality involving a mean of the area and the length of the boundary of immersed discs whose boundaries are homotopically non-trivial curves. We also prove a rigidity result for the equality case when the boundary is strongly totally geodesic. This can be viewed as a partial generalization of a result due to Lucas Ambrózio in (2015, J. Geom. Anal., 25, 1001–1017) to higher dimensions.


Author(s):  
Andrés Franco

We present a rigidity result in Lorentzian geometry, related to Bartnik’s conjecture, under the hypothesis of the existence of a concircular vector field with certain properties. We also study the relationship between two different notions of concircular vector fields found in the literature, and give conditions for a generalized Robertson–Walker spacetime to have a timelike concircular vector field.


2021 ◽  
Vol 13 (2) ◽  
pp. 386-394
Author(s):  
S. Günsen ◽  
L. Onat

In this paper, we investigate multiply warped product manifold \[M =B\times_{b_1} F_1\times_{b_2} F_2\times_{b_3} \ldots \times_{b_m} F_m\] as a gradient almost Ricci soliton. Taking $b_i=b$ for $1\leq i \leq m$ lets us to deduce that potential field depends on $B$. With this idea we also get a rigidity result and show that base is a generalized quasi-Einstein manifold if $\nabla b$ is conformal.


2021 ◽  
pp. 1-49
Author(s):  
COLIN GUILLARMOU ◽  
GERHARD KNIEPER ◽  
THIBAULT LEFEUVRE

Abstract We refine the recent local rigidity result for the marked length spectrum obtained by the first and third author in [GL19] and give an alternative proof using the geodesic stretch between two Anosov flows and some uniform estimate on the variance appearing in the central limit theorem for Anosov geodesic flows. In turn, we also introduce a new pressure metric on the space of isometry classes, which reduces to the Weil–Petersson metric in the case of Teichmüller space and is related to the works [BCLS15, MM08].


Sign in / Sign up

Export Citation Format

Share Document