scholarly journals The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs

Author(s):  
Debora Impera ◽  
Stefano Pigola ◽  
Michele Rimoldi

AbstractWe show that two properly embedded self-shrinkers in Euclidean space that are sufficiently separated at infinity must intersect at a finite point. The proof is based on a localized version of the Reilly formula applied to a suitable f-harmonic function with controlled gradient. In the immersed case, a new direct proof of the generalized half-space property is also presented.

2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Yulian Zhang ◽  
Valery Piskarev

Abstract Motivated by (Xu et al. in Bound. Value Probl. 2013:262, 2013) and (Yang and Ren in Proc. Indian Acad. Sci. Math. Sci. 124(2):175-178, 2014), in this paper we aim to construct a modified Green function in the upper-half space of the n-dimensional Euclidean space, which generalizes the boundary property of general Green potential.


1984 ◽  
Vol 95 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Jang-Mei G. Wu

In [3], Barth, Brannan and Hayman proved that if u(z) is any non-constant harmonic function in ℝ2, ø(r) is a positive increasing function of r for r ≥ 1 andthen there exists a path going from a finite point to ∞, such that u(z) > ø(|z|) on Γ. Moreover, they showed by example that the integral condition above cannot be relaxed.


1968 ◽  
Vol 11 (3) ◽  
pp. 453-455 ◽  
Author(s):  
Shwu-Yeng T. Lin

Let E be a metric Baire space and f a real valued function on E. Then the set of points of almost continuity in E is dense (everywhere) in E.Our purpose is to set this result in its most natural context, relax some very restricted hypotheses, and to supply a direct proof. More precisely, we shall prove that the metrizability of E in Theorem H may be removed, and that the range space may be generalized from the (Euclidean) space of real numbers to any topological space satisfying the second axiom of countability [2].


1967 ◽  
Vol 15 (4) ◽  
pp. 285-289 ◽  
Author(s):  
E. F. Harding

1. An arbitrary (k– 1)-dimensional hyperplane disconnects K-dimensional Euclidean space Ek into two disjoint half-spaces. If a set of N points in general position in Ek is given [nok +1 in a (k–1)-plane, no k in a (k–2)-plane, and so on], then the set is partitione into two subsets by the hyperplane, a point belonging to one or the other subset according to which half-space it belongs to; for this purpose the half-spaces are considered as an unordered pair.


1982 ◽  
Vol 92 (2) ◽  
pp. 243-250
Author(s):  
J. Bolton

1. Introduction and statement of results. Let f: Mn-1 → ℝn be an immersion into Euclidean space ℝn. Each unit vector v to ℝn determines a height function bv: ℝn → ℝ. The corresponding half-space Lv = b-1([0, ∞) has boundary Hv = (b−1). and L is a (globally) supporting half-space for M at m є M if (m) є H and f(M) ∩ Lv = f(M) ∩ Hv.


1975 ◽  
Vol 18 (3) ◽  
pp. 335-346 ◽  
Author(s):  
M. Essén ◽  
H. L. Jackson

Let Rp(p≥2) denote p-dimensional Euclidean space, D the half space defined by {P = (x1, x2, …, xp) ∊ Rp: xp > 0} and ∂D the frontier of D in Rp. The Martin boundary (see [2]) of D can be identified with ∂D∪{∞}.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Qiao

We discuss the behavior at infinity of modified Poisson integral and Green potential on a half-space of then-dimensional Euclidean space, which generalizes the growth properties of analytic functions, harmonic functions and superharmonic functions.


Sign in / Sign up

Export Citation Format

Share Document