superharmonic functions
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
N. Nathiya ◽  
C. Amulya Smyrna

Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.


Author(s):  
Shiguang Ma ◽  
Jie Qing

AbstractIn this paper we study asymptotic behaviors of n-superharmonic functions at singularity using the Wolff potential and capacity estimates in nonlinear potential theory. Our results are inspired by and extend [6] of Arsove–Huber and [63] of Taliaferro in 2 dimensions. To study n-superharmonic functions we use a new notion of thinness in terms of n-capacity motivated by a type of Wiener criterion in [6]. To extend [63], we employ the Adams–Moser–Trudinger’s type inequality for the Wolff potential, which is inspired by the inequality used in [15] of Brezis–Merle. For geometric applications, we study the asymptotic end behaviors of complete conformally flat manifolds as well as complete properly embedded hypersurfaces in hyperbolic space. These geometric applications seem to elevate the importance of n-Laplace equations and make a closer tie to the classic analysis developed in conformal geometry in general dimensions.


Author(s):  
Iwona Chlebicka ◽  
Anna Zatorska-Goldstein

AbstractWe study properties of $\mathcal {A}$ A -harmonic and $\mathcal {A}$ A -superharmonic functions involving an operator having generalized Orlicz growth. Our framework embraces reflexive Orlicz spaces, as well as natural variants of variable exponent and double-phase spaces. In particular, Harnack’s Principle and Minimum Principle are provided for $\mathcal {A}$ A -superharmonic functions.


2020 ◽  
Vol 8 ◽  
Author(s):  
Nikita Kalinin

Sandpile models exhibit fascinating pattern structures: patches, characterized by quadratic functions, and line-shaped patterns (also called solitons, webs, or linear defects). It was predicted by Dhar and Sadhu that sandpile patterns with line-like features may be described in terms of tropical geometry. We explain the main ideas and technical tools—tropical geometry and discrete superharmonic functions—used to rigorously establish certain properties of these patterns. It seems that the aforementioned tools have great potential for generalization and application in a variety of situations.


2020 ◽  
Vol 378 (3) ◽  
pp. 1649-1675 ◽  
Author(s):  
Nikita Kalinin ◽  
Mikhail Shkolnikov

Sign in / Sign up

Export Citation Format

Share Document