scholarly journals Expectation in metric spaces and characterizations of Banach spaces

2009 ◽  
Vol 42 (4) ◽  
Author(s):  
Artur Bator ◽  
Wiesław Zięba

AbstractWe consider different definitions of expectation of random elements taking values in metric spaces. All such definitions are valid also in Banach spaces and in this case the results coincide with the Bochner integral. There may exist an isometry between considered metric space and some Banach space and in this case one can use the Bochner integral instead of expectation in metric space. We give some conditions which ensure existence of such isometry, for two different definitions of expectation in metric space.

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
F. Baudier ◽  
G. Lancien

Abstract We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.


2018 ◽  
Vol 61 (1) ◽  
pp. 33-47 ◽  
Author(s):  
S. OSTROVSKA ◽  
M. I. OSTROVSKII

AbstractGiven a Banach spaceXand a real number α ≥ 1, we write: (1)D(X) ≤ α if, for any locally finite metric spaceA, all finite subsets of which admit bilipschitz embeddings intoXwith distortions ≤C, the spaceAitself admits a bilipschitz embedding intoXwith distortion ≤ α ⋅C; (2)D(X) = α+if, for every ϵ > 0, the conditionD(X) ≤ α + ϵ holds, whileD(X) ≤ α does not; (3)D(X) ≤ α+ifD(X) = α+orD(X) ≤ α. It is known thatD(X) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1)D((⊕n=1∞Xn)p) ≤ 1+for every nested family of finite-dimensional Banach spaces {Xn}n=1∞and every 1 ≤p≤ ∞. (2)D((⊕n=1∞ℓ∞n)p) = 1+for 1 <p< ∞. (3)D(X) ≤ 4+for every Banach spaceXwith no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toufik Tiaiba ◽  
Dahmane Achour

Abstract We introduce and investigate the injective hull of the strongly Lipschitz classical p-compact operator ideal defined between a pointed metric space and a Banach space. As an application we extend some characterizations of the injective hull of the strongly Lipschitz classical p-compact from the linear case to the Lipschitz case. Also, we introduce the ideal of Lipschitz unconditionally quasi p-nuclear operators between pointed metric spaces and show that it coincides with the Lipschitz injective hull of the ideal of Lipschitz classical p-compact operators.


2016 ◽  
Vol 68 (4) ◽  
pp. 876-907 ◽  
Author(s):  
Mikhail Ostrovskii ◽  
Beata Randrianantoanina

AbstractFor a fixed K > 1 and n ∈ ℕ, n ≫ 1, we study metric spaces which admit embeddings with distortion ≤ K into each n-dimensional Banach space. Classical examples include spaces embeddable into log n-dimensional Euclidean spaces, and equilateral spaces.We prove that good embeddability properties are preserved under the operation of metric composition of metric spaces. In particular, we prove that n-point ultrametrics can be embedded with uniformly bounded distortions into arbitrary Banach spaces of dimension log n.The main result of the paper is a new example of a family of finite metric spaces which are not metric compositions of classical examples and which do embed with uniformly bounded distortion into any Banach space of dimension n. This partially answers a question of G. Schechtman.


2010 ◽  
Vol 02 (04) ◽  
pp. 581-597 ◽  
Author(s):  
E. VEOMETT ◽  
K. WILDRICK

Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.


1979 ◽  
Vol 2 (2) ◽  
pp. 309-323
Author(s):  
W. J. Padgett ◽  
R. L. Taylor

Let{Xk}be independent random variables withEXk=0for allkand let{ank:n≥1, k≥1}be an array of real numbers. In this paper the almost sure convergence ofSn=∑k=1nankXk,n=1,2,…, to a constant is studied under various conditions on the weights{ank}and on the random variables{Xk}using martingale theory. In addition, the results are extended to weighted sums of random elements in Banach spaces which have Schauder bases. This extension provides a convergence theorem that applies to stochastic processes which may be considered as random elements in function spaces.


2021 ◽  
Vol 151 (6) ◽  
pp. 1683-1699
Author(s):  
Ramón J. Aliaga ◽  
Camille Noûs ◽  
Colin Petitjean ◽  
Antonín Procházka

We prove a general principle satisfied by weakly precompact sets of Lipschitz-free spaces. By this principle, certain infinite dimensional phenomena in Lipschitz-free spaces over general metric spaces may be reduced to the same phenomena in free spaces over their compact subsets. As easy consequences we derive several new and some known results. The main new results are: $\mathcal {F}(X)$ is weakly sequentially complete for every superreflexive Banach space $X$, and $\mathcal {F}(M)$ has the Schur property and the approximation property for every scattered complete metric space $M$.


Author(s):  
Thomas Weighill ◽  
Takamitsu Yamauchi ◽  
Nicolò Zava

AbstractWe consider infinite-dimensional properties in coarse geometry for hyperspaces consisting of finite subsets of metric spaces with the Hausdorff metric. We see that several infinite-dimensional properties are preserved by taking the hyperspace of subsets with at most n points. On the other hand, we prove that, if a metric space contains a sequence of long intervals coarsely, then its hyperspace of finite subsets is not coarsely embeddable into any uniformly convex Banach space. As a corollary, the hyperspace of finite subsets of the real line is not coarsely embeddable into any uniformly convex Banach space. It is also shown that every (not necessarily bounded geometry) metric space with straight finite decomposition complexity has metric sparsification property.


Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3777-3787
Author(s):  
Mona Khandaqji ◽  
Aliaa Burqan

For a Banach space X, L?(T,X) denotes the metric space of all X-valued ?-integrable functions f : T ? X, where the measure space (T,?,?) is a complete positive ?-finite and ? is an increasing subadditive continuous function on [0,?) with ?(0) = 0. In this paper we discuss the proximinality problem for the monotonous norm on best simultaneous approximation from the closed subspace Y?X to a finite number of elements in X.


1997 ◽  
Vol 20 (3) ◽  
pp. 443-450 ◽  
Author(s):  
M. Ordóñez Cabrera

The convergence in mean of a weighted sum∑kank(Xk−EXk)of random elements in a separable Banach space is studied under a new hypothesis which relates the random elements with their respective weights in the sum: the{ank}-compactly uniform integrability of{Xn}. This condition, which is implied by the tightness of{Xn}and the{ank}-uniform integrability of{‖Xn‖}, is weaker than the compactly miform integrability of{Xn}and leads to a result of convergence in mean which is strictly stronger than a recent result of Wang, Rao and Deli.


Sign in / Sign up

Export Citation Format

Share Document