scholarly journals Certain class of p-valent functions associated with the wright generalized hypergeometric function

2010 ◽  
Vol 43 (1) ◽  
Author(s):  
M. K. Aouf ◽  
A. Shamandy ◽  
A. O. Mostafa ◽  
S. M. Madian

AbstractUsing the Wright’s generalized hypergeometric function, we introduce a new class

2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Insuk Kim

The aim of this research paper is to evaluate fifty double integrals invoving generalized hypergeometric function (25 each) in the form of\begin{align*}\int_{0}^{1}\int_{0}^{1} & x^{c-1}y^{c+\al-1} (1-x)^{\al- 1}(1-y)^{\be-1}\, (1-xy)^{c+\ell-\al-\be+1}\;\\ &\times \;{}_3F_2 \left[\begin{array}{c}a,\,\,\,\,\,b,\,\,\,\,\,2c+\ell+ 1 \\ \frac{1}{2}(a+b+i+1),\,\,2c+j \end{array}; xy\right]\,dxdy\end{align*}and\begin{align*}\int_{0}^{1}\int_{0}^{1} & x^{c+\ell}y^{c+\ell+\al} (1-x)^{\al-1}(1-y)^{\be-1}\, (1-xy)^{c- \al-\be}\;\\ &\times \;{}_3F_2 \left[\begin{array}{c}a,\,\,\,\,\,b,\,\,\,\,\,2c+\ell+ 1 \\ \frac{1}{2}(a+b+i+1),\,\,2c+j \end{array}; 1-xy\right]\,dxdy\end{align*}in the most general form for any $\ell \in \mathbb{Z}$ and $i, j = 0, \pm 1, \pm2$.The results are derived with the help of generalization of Edwards's well known double integral due to Kim, {\it et al.} and generalized classical Watson's summation theorem obtained earlier by Lavoie, {\it et al}.More than one hundred ineteresting special cases have also been obtained.


2020 ◽  
Vol 44 (4) ◽  
pp. 539-550
Author(s):  
DINESH KUMAR ◽  
FRÉDÉRIC AYANT ◽  
DEVENDRA KUMAR

The aim of this paper is to evaluate an interesting integral involving generalized hypergeometric function and the multivariable Aleph-function. The integral is evaluated with the help of an integral involving generalized hypergeometric function obtained recently by Kim et al. [?]. The integral is further used to evaluate an interesting summation formula concerning the multivariable Aleph-function. A few interesting special cases and corollaries have also been discussed.


Author(s):  
E. El-Yagubi ◽  
M. Darus

In this paper, we study and introduce the majorization properties of a new class of analytic p-valent functions of complex order defined by the generalized hypergeometric function. Some known consequences of our main result will be given. Moreover, we investigate the coefficient estimates for this class.


2020 ◽  
Vol 12 (1) ◽  
pp. 129-137 ◽  
Author(s):  
L. Bedratyuk ◽  
N. Luno

Let $x^{(n)}$ denotes the Pochhammer symbol (rising factorial) defined by the formulas $x^{(0)}=1$ and $x^{(n)}=x(x+1)(x+2)\cdots (x+n-1)$ for $n\geq 1$. In this paper, we present a new real-valued Appell-type polynomial family $A_n^{(k)}(m,x)$, $n, m \in {\mathbb{N}}_0$, $k \in {\mathbb{N}},$ every member of which is expressed by mean of the generalized hypergeometric function ${}_{p} F_q \begin{bmatrix} \begin{matrix} a_1, a_2, \ldots, a_p \:\\ b_1, b_2, \ldots, b_q \end{matrix} \: \Bigg| \:z \end{bmatrix}= \sum\limits_{k=0}^{\infty} \frac{a_1^{(k)} a_2^{(k)} \ldots a_p^{(k)}}{b_1^{(k)} b_2^{(k)} \ldots b_q^{(k)}} \frac{z^k}{k!}$ as follows $$ A_n^{(k)}(m,x)= x^n{}_{k+p} F_q \begin{bmatrix} \begin{matrix} {a_1}, {a_2}, {\ldots}, {a_p}, {\displaystyle -\frac{n}{k}}, {\displaystyle -\frac{n-1}{k}}, {\ldots}, {\displaystyle-\frac{n-k+1}{k}}\:\\ {b_1}, {b_2}, {\ldots}, {b_q} \end{matrix} \: \Bigg| \: \displaystyle \frac{m}{x^k} \end{bmatrix} $$ and, at the same time, the polynomials from this family are Appell-type polynomials. The generating exponential function of this type of polynomials is firstly discovered and the proof that they are of Appell-type ones is given. We present the differential operator formal power series representation as well as an explicit formula over the standard basis, and establish a new identity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication and some other formulas for this polynomial family.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
T. A. Ishkhanyan ◽  
T. A. Shahverdyan ◽  
A. M. Ishkhanyan

We examine the expansions of the solutions of the general Heun equation in terms of the Gauss hypergeometric functions. We present several expansions using functions, the forms of which differ from those applied before. In general, the coefficients of the expansions obey three-term recurrence relations. However, there exist certain choices of the parameters for which the recurrence relations become two-term. The coefficients of the expansions are then explicitly expressed in terms of the gamma functions. Discussing the termination of the presented series, we show that the finite-sum solutions of the general Heun equation in terms of generally irreducible hypergeometric functions have a representation through a single generalized hypergeometric function. Consequently, the power-series expansion of the Heun function for any such case is governed by a two-term recurrence relation.


Sign in / Sign up

Export Citation Format

Share Document