Induced Voltage Behavior on Pipelines Due to HV AC Interference: Effective Length Concept

ENERGYO ◽  
2018 ◽  
Author(s):  
Mohamad Nassereddine ◽  
Jamal Rizk ◽  
Mahmood Nagrial ◽  
Ali Hellany
2015 ◽  
Vol 16 (2) ◽  
pp. 131-139
Author(s):  
Mohamad Nassereddine ◽  
Jamal Rizk ◽  
Mahmood Nagrial ◽  
Ali Hellany

Abstract High-voltage infrastructure upgrade is expending due to the growth in populations. To save on easement cost and to reduce the environmental impact of these projects, HV transmission lines occupy the same easement as pipelines in many cases. This joint easement introduces the AC interference between transmission lines and pipelines. The induced voltage can reach a limit which will jeopardize the human safety. The cited research studies the induced voltage under the presence of the overhead earth wire (OHEW) using the shielding factor. The work in this paper studies the induced voltage using the OHEW section current along with the superposition theorem. The simulations are compared to the existing research methods. The case study along with the theoretical study discusses the advance accuracy of the proposed method over the existing shield factor used in the presence research. Furthermore, they introduce the effective length along with the effective shielding factor, which aids in computing the additional effect that the OHEW has on the induced voltage.


Author(s):  
Seyed Sajad Sajadi ◽  
Saeed Reza Ostadzadeh ◽  
Seyed Hossein Hesamedin Sadeghi

Purpose The purpose of this paper is to investigate the simultaneous effects of ionization and dispersion of soil on the impulse behavior of grounding electrodes under first and subsequent stroke currents. Design/methodology/approach A recently introduced technique called improved multi-conductor transmission line (MTL) is simplified for grounding electrodes buried in both-affected soils. Findings The simulation results show that including the two effects simultaneously in highly resistive soils under high-valued subsequent stroke current is recommended. Otherwise, simultaneous effects can be disregard. Originality/value To the best of the authors’ knowledge, there is no research on sensitivity analyses for the simultaneous inclusion of the two effects on the effective length and the induced voltage on the soil surface. To this end, the simplified MTL is applied to the grounding electrodes. The simulation results show that the computational efficiency in comparison with previous methods is, first, considerably increased. Second, the simultaneous effects result in decreasing the soil surface voltage with respect to situations where either ionization or dispersion is taken into account (single-affected soils). In other words, the performance of grounding systems is improved. Third, the effective length in both-affected soil is has a middle value with respect to the single-affected soil. Such findings practically and financially are of importance.


Author(s):  
Fubin Zhang ◽  
David Maxwell

Abstract Based on the understanding of laser based techniques’ physics theory and the topology/structure of analog circuit systems with feedback loops, the propagation of laser induced voltage/current alteration inside the analog IC is evaluated. A setup connection scheme is proposed to monitor this voltage/current alteration to achieve a better success rate in finding the fail site or defect. Finally, a case of successful isolation of a high resistance via on an analog device is presented.


2017 ◽  
Vol 68 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Gabriela Oprina ◽  
Ladislau Radermacher ◽  
Daniel Lingvay ◽  
Dorian Marin ◽  
Andreea Voina ◽  
...  

The corrosion state of an underground metallic pipeline of �161 mm and 565 m length was assessed by specific electrical and electrochemical measurements. The investigated pipe, buried in 1997, was protected against corrosion by successive layers of bituminous material with a total thickness of 1 to 1.2 mm. The pipeline crosses three electrified railway lines (50 Hz - 28 kV), and then its route is approximately parallel to these lines; thus, the induced AC voltages between line and ground were calculated obtaining values between 4.05 and 7.1 Vrms, in good agreement with the values measured in the accessible points. The measurements regarding the insulation capacity against corrosion of the bituminous insulation, performed at one month and after 19 years of burial, showed an increase of the average cathode current density needed for obtaining the protection potential in the range �1.00 � �1.28 VCu/CuSO4 of approx. three times (from 6.65 up to 19.96 mA/m2), in good agreement with the evolution of the insulation resistance measured between the steel pipe (having a contact area with the ground of 270.5 m2) and a ground socket of 4 W, which decreased from 995 to 315 kW. Following the analysis and processing of the field collected data, it is considered that, by implementing a cheap cathodic protection system (without cathodic current power supply), based on the rectification of the AC induced voltage, the safe operation period of the investigated pipeline may be extended by at least 50 years.


Sign in / Sign up

Export Citation Format

Share Document