Electrostatically Induced Voltage in Metal Box When Charged Object Like Hand Moves Away from the Box to Three Directions

Author(s):  
Norimitsu Ichikawa ◽  
Hiroki Kimura ◽  
Petru Notingher ◽  
Nicholas G. Paulter
Keyword(s):  
Author(s):  
Fubin Zhang ◽  
David Maxwell

Abstract Based on the understanding of laser based techniques’ physics theory and the topology/structure of analog circuit systems with feedback loops, the propagation of laser induced voltage/current alteration inside the analog IC is evaluated. A setup connection scheme is proposed to monitor this voltage/current alteration to achieve a better success rate in finding the fail site or defect. Finally, a case of successful isolation of a high resistance via on an analog device is presented.


2017 ◽  
Vol 68 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Gabriela Oprina ◽  
Ladislau Radermacher ◽  
Daniel Lingvay ◽  
Dorian Marin ◽  
Andreea Voina ◽  
...  

The corrosion state of an underground metallic pipeline of �161 mm and 565 m length was assessed by specific electrical and electrochemical measurements. The investigated pipe, buried in 1997, was protected against corrosion by successive layers of bituminous material with a total thickness of 1 to 1.2 mm. The pipeline crosses three electrified railway lines (50 Hz - 28 kV), and then its route is approximately parallel to these lines; thus, the induced AC voltages between line and ground were calculated obtaining values between 4.05 and 7.1 Vrms, in good agreement with the values measured in the accessible points. The measurements regarding the insulation capacity against corrosion of the bituminous insulation, performed at one month and after 19 years of burial, showed an increase of the average cathode current density needed for obtaining the protection potential in the range �1.00 � �1.28 VCu/CuSO4 of approx. three times (from 6.65 up to 19.96 mA/m2), in good agreement with the evolution of the insulation resistance measured between the steel pipe (having a contact area with the ground of 270.5 m2) and a ground socket of 4 W, which decreased from 995 to 315 kW. Following the analysis and processing of the field collected data, it is considered that, by implementing a cheap cathodic protection system (without cathodic current power supply), based on the rectification of the AC induced voltage, the safe operation period of the investigated pipeline may be extended by at least 50 years.


Author(s):  
HeWu Zhou ◽  
Panmeng Meng ◽  
Yang LIn ◽  
Zihao Chen ◽  
Yanjie Zhao ◽  
...  

Photothermoelectric (PTE) devices show a promising prospect for realizing photo-induced voltage output using infrared light, which can meet the crucial requirement for photo detector and power source. However, limited utilization...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Wang ◽  
Asuka Miura ◽  
Rajkumar Modak ◽  
Yukiko K. Takahashi ◽  
Ken-ichi Uchida

AbstractThe introduction of spin caloritronics into thermoelectric conversion has paved a new path for versatile energy harvesting and heat sensing technologies. In particular, thermoelectric generation based on the anomalous Nernst effect (ANE) is an appealing approach as it shows considerable potential to realize efficient, large-area, and flexible use of heat energy. To make ANE applications viable, not only the improvement of thermoelectric performance but also the simplification of device structures is essential. Here, we demonstrate the construction of an anomalous Nernst thermopile with a substantially enhanced thermoelectric output and simple structure comprising a single ferromagnetic material. These improvements are achieved by combining the ANE with the magneto-optical recording technique called all-optical helicity-dependent switching of magnetization. Our thermopile consists only of Co/Pt multilayer wires arranged in a zigzag configuration, which simplifies microfabrication processes. When the out-of-plane magnetization of the neighboring wires is reversed alternately by local illumination with circularly polarized light, the ANE-induced voltage in the thermopile shows an order of magnitude enhancement, confirming the concept of a magneto-optically designed anomalous Nernst thermopile. The sign of the enhanced ANE-induced voltage can be controlled reversibly by changing the light polarization. The engineering concept demonstrated here promotes effective utilization of the characteristics of the ANE and will contribute to realizing its thermoelectric applications.


Author(s):  
Mahdi Izadi ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Miszaina Osman ◽  
Maryam Hajikhani

2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


Sign in / Sign up

Export Citation Format

Share Document