scholarly journals A Fixed Point Theorem for Contractive Mappings with Nonlinear Combinations of Rational Expressions in b-Metric Spaces

2017 ◽  
Vol 58 (1) ◽  
pp. 29-46
Author(s):  
W. E. Barrera ◽  
J. R. Morales ◽  
E. M. Rojas

AbstractIn this paper we discuss the existence and uniqueness of fixed points for mappings satisfying several (nonlinear-combinations) contractive inequalities of rational type controlled by altering distance functions. Our results extend several fixed point results in the literature.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1432
Author(s):  
Alireza Pourmoslemi ◽  
Shayesteh Rezaei ◽  
Tahereh Nazari ◽  
Mehdi Salimi

In this paper, first, using interpolative Kannan type contractions, a new fixed point theorem has been proved. Then, by applying sequentially convergent mappings and using subadditive altering distance functions, we generalize contractions in complete metric spaces. Finally, we investigate some fixed point theorems which are generalizations of Kannan and Reich fixed points.


Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4587-4612 ◽  
Author(s):  
S.K. Padhan ◽  
Rao Jagannadha ◽  
Hemant Nashine ◽  
R.P. Agarwal

This paper extends and generalizes results of Mukheimer [(?,?,?)-contractive mappings in ordered partial b-metric spaces, J. Nonlinear Sci. Appl. 7(2014), 168-179]. A new concept of (?-?1-?2)-contractive mapping using two altering distance functions in ordered b-metric-like space is introduced and basic fixed point results have been studied. Useful examples are illustrated to justify the applicability and effectiveness of the results presented herein. As an application, the existence of solution of fourth-order two-point boundary value problems is discussed and rationalized by a numerical example.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hamed H. Alsulami ◽  
Selma Gülyaz ◽  
Erdal Karapınar ◽  
İncı M. Erhan

A class ofα-admissible contractions defined via altering distance functions is introduced. The existence and uniqueness conditions for fixed points of such maps on complete metric spaces are investigated and related fixed point theorems are presented. The results are reconsidered in the context of partially ordered metric spaces and applied to boundary value problems for differential equations with periodic boundary conditions.


2021 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Nabil Mlaiki ◽  
Doaa Rizk ◽  
Fatima Azmi

In this paper, we establish a fixed point theorem for controlled rectangular $b-$metric spaces for mappings that satisfy $(\psi, \phi)-$contractive mappings. Also, we give an application of our results as an integral equation.


Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 2047-2057 ◽  
Author(s):  
Kumar Nashine ◽  
Zoran Kadelburg

We introduce the notion of cyclic generalized ?-contractive mappings in b-metric spaces and discuss the existence and uniqueness of fixed points for such mappings. Our results generalize many existing fixed point theorems in the literature. Examples are given to support the usability of our results. Finally, an application to existence problem for an integral equation is presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lakshmi Narayan Mishra ◽  
Shiv Kant Tiwari ◽  
Vishnu Narayan Mishra ◽  
Idrees A. Khan

We establish some unique fixed point theorems in complete partial metric spaces for generalized weaklyS-contractive mappings, containing two altering distance functions under certain assumptions. Also, we discuss some examples in support of our main results.


Author(s):  
Binayak S Choudhury

In this work we introduce the class of weakly c-contractive mappings. We establish that these mappings necessarily have unique fixed points in complete metric spaces. We support our result by an example. Our result also generalises an existing result in metric spaces. Key words: Metric space; Fixed point; Weak C-contraction. M S C (2000): 54H25   DOI: 10.3126/kuset.v5i1.2842 Kathmandu University Journal of Science, Engineering and Technology Vol.5, No.1, January 2009, pp 6-13


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Manish Jain ◽  
Kenan Taş

We establish the existence and uniqueness of coupled common fixed point for symmetric(φ,ψ)-contractive mappings in the framework of orderedG-metric spaces. Present work extends, generalize, and enrich the recent results of Choudhury and Maity (2011), Nashine (2012), and Mohiuddine and Alotaibi (2012), thereby, weakening the involved contractive conditions. Our theoretical results are accompanied by suitable examples and an application to integral equations.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 504
Author(s):  
Pradip Patle ◽  
Jelena Vujaković ◽  
Deepesh Patel ◽  
Stojan Radenović

A new proper generalization of metric called as θ -metric is introduced by Khojasteh et al. (Mathematical Problems in Engineering (2013) Article ID 504609). In this paper, first we prove the Caristi type fixed point theorem in an alternative and comparatively new way in the context of θ -metric. We also investigate two θ -metrics on CB ( X ) (family of nonempty closed and bounded subsets of a set X). Furthermore, using the obtained θ -metrics on CB ( X ) , we prove two new fixed point results for multi-functions which generalize the results of Nadler and Lim type in the context of such spaces. In order to illustrate the usability of our results, we equipped them with competent examples.


Sign in / Sign up

Export Citation Format

Share Document