Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions

2018 ◽  
Vol 21 (3) ◽  
pp. 716-745 ◽  
Author(s):  
Seshadev Padhi ◽  
John R. Graef ◽  
Smita Pati

Abstract In this paper, we study the existence of positive solutions to the fractional boundary value problem $$\begin{array}{} \displaystyle D^{\alpha }_{0+}x(t)+q(t)f(t,x(t))=0, \,\, 0\lt t \lt1, \end{array}$$ together with the boundary conditions $$\begin{array}{} \displaystyle x(0)=x^{\prime}(0)= \cdots = x^{(n-2)}(0)=0, D_{0+}^{\beta }x(1)= \int^{1}_{0}h(s,x(s))\,dA(s), \end{array}$$ where n > 2, n – 1 < α ≤ n, β ∈ [1,α – 1], and $\begin{array}{} \displaystyle D^{\alpha }_{0+} \end{array}$ and $\begin{array}{} \displaystyle D^{\beta }_{0+} \end{array}$ are the standard Riemann-Liouville fractional derivatives of order α and β, respectively. We consider two different cases: f, h : [0, 1] × R → R, and f, h : [0, 1] × [0, ∞) → [0, ∞). In the first case, we prove the existence and uniqueness of the solutions of the above problem, and in the second case, we obtain sufficient conditions for the existence of positive solutions of the above problem. We apply a number of different techniques to obtain our results including Schauder’s fixed point theorem, the Leray-Schauder alternative, Krasnosel’skii’s cone expansion and compression theorem, and the Avery-Peterson fixed point theorem. The generality of the Riemann-Stieltjes boundary condition includes many problems studied in the literature. Examples are included to illustrate our findings.

2015 ◽  
Vol 20 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

In this paper, by using double fixed point theorem and a new fixed point theorem, some sufficient conditions for the existence of at least two and at least three positive solutions of an nth-order boundary value problem with integral boundary conditions are established, respectively. We also give two examples to illustrate our main results.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650089 ◽  
Author(s):  
K. R. Prasad ◽  
L. T. Wesen ◽  
N. Sreedhar

In this paper, we consider the second-order differential equations of the form [Formula: see text] satisfying the Sturm–Liouville boundary conditions [Formula: see text] where [Formula: see text]. By an application of Avery–Henderson fixed point theorem, we establish conditions for the existence of multiple positive solutions to the boundary value problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
A. Guezane-Lakoud ◽  
R. Khaldi

This work is devoted to the existence of positive solutions for a fractional boundary value problem with fractional integral deviating argument. The proofs of the main results are based on Guo-Krasnoselskii fixed point theorem and Avery and Peterson fixed point theorem. Two examples are given to illustrate the obtained results, ending the paper.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Yanping Guo ◽  
Wenying Wei ◽  
Yuerong Chen

We consider the multi-point discrete boundary value problem with one-dimensionalp-Laplacian operatorΔ(ϕp(Δu(t−1))+q(t)f(t,u(t),Δu(t))=0,t∈{1,…,n−1}subject to the boundary conditions:u(0)=0,u(n)=∑i=1m−2aiu(ξi), whereϕp(s)=|s|p−2s,p>1,ξi∈{2,…,n−2}with1<ξ1<⋯<ξm−2<n−1andai∈(0,1),0<∑i=1m−2ai<1. Using a new fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.


2017 ◽  
Vol 67 (2) ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

AbstractIn this paper, six functionals fixed point theorem is used to investigate the existence of at least three positive solutions for a nonlinear


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Luchao Zhang ◽  
Weiguo Zhang ◽  
Xiping Liu ◽  
Mei Jia

AbstractWe consider a class of Caputo fractional p-Laplacian differential equations with integral boundary conditions which involve two parameters. By using the Avery–Peterson fixed point theorem, we obtain the existence of positive solutions for the boundary value problem. As an application, we present an example to illustrate our main result.


2011 ◽  
Vol 2 (1) ◽  
pp. 43-53
Author(s):  
Wei-Cheng Lian ◽  
Fu-Hsiang Wong ◽  
Jen-Chieh Lo ◽  
Cheh-Chih Yeh

Using Kransnoskii’s fixed point theorem, the authors obtain the existence of multiple solutions of the following boundary value problem


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Daliang Zhao ◽  
Yansheng Liu

This paper is devoted to the existence of multiple positive solutions for fractional boundary value problemDC0+αu(t)=f(t,u(t),u′(t)),0<t<1,u(1)=u′(1)=u′′(0)=0, where2<α≤3is a real number,CD0+αis the Caputo fractional derivative, andf:[0,1]×[0,+∞)×R→[0,+∞)is continuous. Firstly, by constructing a special cone, applying Guo-Krasnoselskii’s fixed point theorem and Leggett-Williams fixed point theorem, some new existence criteria for fractional boundary value problem are established; secondly, by applying a new extension of Krasnoselskii’s fixed point theorem, a sufficient condition is obtained for the existence of multiple positive solutions to the considered boundary value problem from its auxiliary problem. Finally, as applications, some illustrative examples are presented to support the main results.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Zhang ◽  
ShiDong Qiao

We study the one-dimensionalp-Laplacianm-point boundary value problem(φp(uΔ(t)))Δ+a(t)f(t,u(t))=0,t∈[0,1]T,u(0)=0,u(1)=∑i=1m−2aiu(ξi), whereTis a time scale,φp(s)=|s|p−2s,p>1, some new results are obtained for the existence of at least one, two, and three positive solution/solutions of the above problem by usingKrasnosel′skll′sfixed point theorem, new fixed point theorem due to Avery and Henderson, as well as Leggett-Williams fixed point theorem. This is probably the first time the existence of positive solutions of one-dimensionalp-Laplacianm-point boundary value problem on time scales has been studied.


Sign in / Sign up

Export Citation Format

Share Document