scholarly journals Positive solutions of fractional p-Laplacian equations with integral boundary value and two parameters

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Luchao Zhang ◽  
Weiguo Zhang ◽  
Xiping Liu ◽  
Mei Jia

AbstractWe consider a class of Caputo fractional p-Laplacian differential equations with integral boundary conditions which involve two parameters. By using the Avery–Peterson fixed point theorem, we obtain the existence of positive solutions for the boundary value problem. As an application, we present an example to illustrate our main result.

2015 ◽  
Vol 20 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

In this paper, by using double fixed point theorem and a new fixed point theorem, some sufficient conditions for the existence of at least two and at least three positive solutions of an nth-order boundary value problem with integral boundary conditions are established, respectively. We also give two examples to illustrate our main results.


2018 ◽  
Vol 21 (3) ◽  
pp. 716-745 ◽  
Author(s):  
Seshadev Padhi ◽  
John R. Graef ◽  
Smita Pati

Abstract In this paper, we study the existence of positive solutions to the fractional boundary value problem $$\begin{array}{} \displaystyle D^{\alpha }_{0+}x(t)+q(t)f(t,x(t))=0, \,\, 0\lt t \lt1, \end{array}$$ together with the boundary conditions $$\begin{array}{} \displaystyle x(0)=x^{\prime}(0)= \cdots = x^{(n-2)}(0)=0, D_{0+}^{\beta }x(1)= \int^{1}_{0}h(s,x(s))\,dA(s), \end{array}$$ where n > 2, n – 1 < α ≤ n, β ∈ [1,α – 1], and $\begin{array}{} \displaystyle D^{\alpha }_{0+} \end{array}$ and $\begin{array}{} \displaystyle D^{\beta }_{0+} \end{array}$ are the standard Riemann-Liouville fractional derivatives of order α and β, respectively. We consider two different cases: f, h : [0, 1] × R → R, and f, h : [0, 1] × [0, ∞) → [0, ∞). In the first case, we prove the existence and uniqueness of the solutions of the above problem, and in the second case, we obtain sufficient conditions for the existence of positive solutions of the above problem. We apply a number of different techniques to obtain our results including Schauder’s fixed point theorem, the Leray-Schauder alternative, Krasnosel’skii’s cone expansion and compression theorem, and the Avery-Peterson fixed point theorem. The generality of the Riemann-Stieltjes boundary condition includes many problems studied in the literature. Examples are included to illustrate our findings.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Jian Chang ◽  
Jian-Ping Sun ◽  
Ya-Hong Zhao

We consider the following third-order boundary value problem with advanced arguments and Stieltjes integral boundary conditions:u′′′t+ft,uαt=0,  t∈0,1,  u0=γuη1+λ1uandu′′0=0,  u1=βuη2+λ2u, where0<η1<η2<1,0≤γ,β≤1,α:[0,1]→[0,1]is continuous,α(t)≥tfort∈[0,1], andα(t)≤η2fort∈[η1,η2]. Under some suitable conditions, by applying a fixed point theorem due to Avery and Peterson, we obtain the existence of multiple positive solutions to the above problem. An example is also included to illustrate the main results obtained.


Filomat ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 169-179
Author(s):  
Rim Bourguiba ◽  
Faten Toumi

In this paper, under suitable conditions we employ the nonlinear alternative of Leray-Schauder type and the Guo-Krasnosel?skii fixed point theorem to show the existence of positive solutions for a system of nonlinear singular Riemann-Liouville fractional differential equations with sign-changing nonlinearities, subject to integral boundary conditions. Some examples are given to illustrate our main results.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650089 ◽  
Author(s):  
K. R. Prasad ◽  
L. T. Wesen ◽  
N. Sreedhar

In this paper, we consider the second-order differential equations of the form [Formula: see text] satisfying the Sturm–Liouville boundary conditions [Formula: see text] where [Formula: see text]. By an application of Avery–Henderson fixed point theorem, we establish conditions for the existence of multiple positive solutions to the boundary value problem.


2022 ◽  
Vol 40 ◽  
pp. 1-14
Author(s):  
Berhail Amel ◽  
Nora Tabouche

In this paper, We study the existence of positive solutions for Hadamard fractional differential equations with integral conditions. We employ Avery-Peterson fixed point theorem and properties of Green's function to show the existence of positive solutions of our problem. Furthermore, we present an example to illustrate our main result.


Filomat ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 415-433
Author(s):  
Karaca Yaslan ◽  
Aycan Sinanoglu

In this paper, four functionals fixed point theorem is used to investigate the existence of positive solutions for second-order time-scale boundary value problem of impulsive dynamic equations on the half-line.


2017 ◽  
Vol 67 (2) ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

AbstractIn this paper, six functionals fixed point theorem is used to investigate the existence of at least three positive solutions for a nonlinear


Sign in / Sign up

Export Citation Format

Share Document