scholarly journals Striving for Better Medical Education: the Simulation Approach

Folia Medica ◽  
2017 ◽  
Vol 59 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Boris E. Sakakushev ◽  
Blagoi I. Marinov ◽  
Penka P. Stefanova ◽  
Stefan St. Kostianev ◽  
Evangelos K. Georgiou

AbstractMedical simulation is a rapidly expanding area within medical education due to advances in technology, significant reduction in training hours and increased procedural complexity. Simulation training aims to enhance patient safety through improved technical competency and eliminating human factors in a risk free environment. It is particularly applicable to a practical, procedure-orientated specialties.Simulation can be useful for novice trainees, experienced clinicians (e.g. for revalidation) and team building. It has become a cornerstone in the delivery of medical education, being a paradigm shift in how doctors are educated and trained. Simulation must take a proactive position in the development of metric-based simulation curriculum, adoption of proficiency benchmarking definitions, and should not depend on the simulation platforms used.Conversely, ingraining of poor practice may occur in the absence of adequate supervision, and equipment malfunction during the simulation can break the immersion and disrupt any learning that has occurred. Despite the presence of high technology, there is a substantial learning curve for both learners and facilitators.The technology of simulation continues to advance, offering devices capable of improved fidelity in virtual reality simulation, more sophisticated procedural practice and advanced patient simulators. Simulation-based training has also brought about paradigm shifts in the medical and surgical education arenas and ensured that the scope and impact of simulation will continue to broaden.

2007 ◽  
Vol 30 (4) ◽  
pp. 56
Author(s):  
I. Rigby ◽  
I. Walker ◽  
T. Donnon ◽  
D. Howes ◽  
J. Lord

We sought to assess the impact of procedural skills simulation training on residents’ competence in performing critical resuscitation skills. Our study was a prospective, cross-sectional study of residents from three residency training programs (Family Medicine, Emergency Medicine and Internal Medicine) at the University of Calgary. Participants completed a survey measuring competence in the performance of the procedural skills required to manage hemodynamic instability. The study intervention was an 8 hour simulation based training program focused on resuscitation procedure psychomotor skill acquisition. Competence was criterion validated at the Right Internal Jugular Central Venous Catheter Insertion station by an expert observer using a standardized checklist (Observed Structured Clinical Examination (OSCE) format). At the completion of the simulation course participants repeated the self-assessment survey. Descriptive Statistics, Cronbach’s alpha, Pearson’s correlation coefficient and Paired Sample t-test statistical tools were applied to the analyze the data. Thirty-five of 37 residents (9 FRCPC Emergency Medicine, 4 CCFP-Emergency Medicine, 17 CCFP, and 5 Internal Medicine) completed both survey instruments and the eight hour course. Seventy-two percent of participants were PGY-1 or 2. Mean age was 30.7 years of age. Cronbach’s alpha for the survey instrument was 0.944. Pearson’s Correlation Coefficient was 0.69 (p < 0.001) for relationship between Expert Assessment and Self-Assessment. The mean improvement in competence score pre- to post-intervention was 6.77 (p < 0.01, 95% CI 5.23-8.32). Residents from a variety of training programs (Internal Medicine, Emergency Medicine and Family Medicine) demonstrated a statistically significant improvement in competence with critical resuscitation procedural skills following an intensive simulation based training program. Self-assessment of competence was validated using correlation data based on expert assessments. Dawson S. Procedural simulation: a primer. J Vasc Interv Radiol. 2006; 17(2.1):205-13. Vozenilek J, Huff JS, Reznek M, Gordon JA. See one, do one, teach one: advanced technology in medical education. Acad Emerg Med. 2004; 11(11):1149-54. Ziv A, Wolpe PR, Small SD, Glick S. Simulation-based medical education: an ethical imperative. Acad Med. 2003; 78(8):783-8.


2014 ◽  
Vol 99 (Suppl 2) ◽  
pp. A479.2-A479
Author(s):  
H Sabir ◽  
S Brenner ◽  
MB Schmid ◽  
T Kuehn ◽  
D Phouvieng ◽  
...  

Author(s):  
Aaron J. Ruberto ◽  
Dirk Rodenburg ◽  
Kyle Ross ◽  
Pritam Sarkar ◽  
Paul C. Hungler ◽  
...  

2020 ◽  
Vol 11 (05) ◽  
pp. 857-864
Author(s):  
Abdulrahman M. Jabour

Abstract Background Maintaining a sufficient consultation length in primary health care (PHC) is a fundamental part of providing quality care that results in patient safety and satisfaction. Many facilities have limited capacity and increasing consultation time could result in a longer waiting time for patients and longer working hours for physicians. The use of simulation can be practical for quantifying the impact of workflow scenarios and guide the decision-making. Objective To examine the impact of increasing consultation time on patient waiting time and physician working hours. Methods Using discrete events simulation, we modeled the existing workflow and tested five different scenarios with a longer consultation time. In each scenario, we examined the impact of consultation time on patient waiting time, physician hours, and rate of staff utilization. Results At baseline scenarios (5-minute consultation time), the average waiting time was 9.87 minutes and gradually increased to 89.93 minutes in scenario five (10 minutes consultation time). However, the impact of increasing consultation time on patients waiting time did not impact all patients evenly where patients who arrive later tend to wait longer. Scenarios with a longer consultation time were more sensitive to the patients' order of arrival than those with a shorter consultation time. Conclusion By using simulation, we assessed the impact of increasing the consultation time in a risk-free environment. The increase in patients waiting time was somewhat gradual, and patients who arrive later in the day are more likely to wait longer than those who arrive earlier in the day. Increasing consultation time was more sensitive to the patients' order of arrival than those with a shorter consultation time.


2003 ◽  
Vol 78 (8) ◽  
pp. 783-788 ◽  
Author(s):  
Amitai Ziv ◽  
Paul Root Wolpe ◽  
Stephen D. Small ◽  
Shimon Glick

2017 ◽  
Vol 51 (11) ◽  
pp. 1179-1179 ◽  
Author(s):  
Ágnes Blaskó ◽  
Krisztina Komlós ◽  
Gábor Fritúz ◽  
János Gál

2012 ◽  
Vol 177 (7) ◽  
pp. 829-835 ◽  
Author(s):  
Shad Deering ◽  
Taylor Sawyer ◽  
Jeffrey Mikita ◽  
Douglas Maurer ◽  
Bernard J. Roth

Sign in / Sign up

Export Citation Format

Share Document