automatic identification system
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 111)

H-INDEX

16
(FIVE YEARS 6)

Author(s):  
Suraj Ingle

Abstract: The Energy Efficiency Design Index (EEDI) is a necessary benchmark for all new ships to prevent pollution from ships. MARPOL has also applied the Ship Energy Efficiency Management Plan (SEEMP) to all existing ships. The Energy Efficiency Operational Indicator (EEOI) provided by SEEMP is used to measure a ship's operational efficiency. The shipowner or operator can make strategic plans, such as routing, hull cleaning, decommissioning, new construction, and so on, by monitoring the EEOI. Fuel Oil Consumption is the most important factor in calculating EEOI (FOC). It is possible to measure it when a ship is in operation. This means that the EEOI of a ship can only be calculated by the shipowner or operator. Other stakeholders, such as the shipbuilding firm and Class, or those who do not have the measured FOC, can assess how efficiently their ships are working relative to other ships if the EEOI can be determined without the real FOC. We present a method to estimate the EEOI without requiring the actual FOC in this paper. The EEOI is calculated using data from the Automatic Identification System (AIS), ship static data, and publicly available environmental data. Big data technologies, notably Hadoop and Spark, are used because the public data is huge. We test the suggested method with real data, and the results show that it can predict EEOI from public data without having to use actual FOC Keywords: Ship operational efficiency, Energy Efficiency Operational Indicator (EEOI), Fuel Oil Consumption (FOC), Automatic Identification System (AIS), Big data


2021 ◽  
Vol 3 (1) ◽  
pp. 33-37
Author(s):  
Piotr Wołejsza ◽  
Jolanta Koszelew ◽  
Krzysztof Matuk ◽  
Oskar Świda

Autonomous Vessel with an Air Look, is a research project that aims to develop autonomous navigation of ships. The system uses three independent sources of information i.e. radar, AIS ? Automatic Identification System and cameras, which can be located on a drone or ship?s superstructure. The article presents the results of testing of an image processing system in real conditions on m/f Wolin.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8430
Author(s):  
Krzysztof Jaskólski ◽  
Łukasz Marchel ◽  
Andrzej Felski ◽  
Marcin Jaskólski ◽  
Mariusz Specht

To enhance the safety of marine navigation, one needs to consider the involvement of the automatic identification system (AIS), an existing system designed for ship-to-ship and ship-to-shore communication. Previous research on the quality of AIS parameters revealed problems that the system experiences with sensor data exchange. In coastal areas, littoral AIS does not meet the expectations of operational continuity and system availability, and there are areas not covered by the system. Therefore, in this study, process models were designed to simulate the tracking of vessel trajectories, enabling system failure detection based on integrity monitoring. Three methods for system integrity monitoring, through hypotheses testing with regard to differences between model output and actual simulated vessel positions, were implemented, i.e., a Global Positioning System (GPS) ship position model, Dead Reckoning and RADAR Extended Kalman Filter (EKF)—Simultaneous localization and mapping (SLAM) based on distance and bearing to navigational aid. The designed process models were validated on simulated AIS dynamic data, i.e., in a simulated experiment in the area of Gdańsk Bay. The integrity of AIS information was determined using stochastic methods based on Markov chains. The research outcomes confirmed the usefulness of the proposed methods. The results of the research prove the high level (~99%) of integrity of the dynamic information of the AIS system for Dead Reckoning and the GPS process model, while the level of accuracy and integrity of the position varied depending on the distance to the navigation aid for the RADAR EKF-SLAM process model.


2021 ◽  
pp. 1-13
Author(s):  
Gareth Wimpenny ◽  
Jan Šafář ◽  
Alan Grant ◽  
Martin Bransby

Abstract The civilian Automatic Identification System (AIS) has no inherent protection against spoofing. Spoofed AIS messages have the potential to interfere with the safe navigation of a vessel by, amongst other approaches, spoofing maritime virtual aids to navigation and/or differential global navigation satellite system (DGNSS) correction data conveyed across it. Acting maliciously, a single transmitter may spoof thousands of AIS messages per minute with the potential to cause considerable nuisance; compromising information provided by AIS intended to enhance the mariner's situational awareness. This work describes an approach to authenticate AIS messages using public key cryptography (PKC) and thus provide unequivocal evidence that AIS messages originate from genuine sources and so can be trusted. Improvements to the proposed AIS authentication scheme are identified which address a security weakness and help avoid false positives to spoofing caused by changes to message syntax. A channel loading investigation concludes that sufficient bandwidth is available to routinely authenticate all AIS messages whilst retaining backwards compatibility by carrying PKC ‘digital signatures’ in a separate VHF Data Exchange System (VDES) side channel.


Author(s):  
Md. Rokonuzzaman ◽  
Nazmus Shakib ◽  
Mashiur Rahman Shakil ◽  
Kausarul Islam ◽  
Md Reaz Hasan Khondoker ◽  
...  

2021 ◽  
Author(s):  
Emanuele Carlini ◽  
Vinicius Monteiro de Lira ◽  
Amilcar Soares ◽  
Mohammad Etemad ◽  
Bruno Brandoli ◽  
...  

2021 ◽  
Vol 2113 (1) ◽  
pp. 012072
Author(s):  
Yitao Wang ◽  
Lei Yang ◽  
Xin Song ◽  
Xuan Li

Abstract With the wide use of automatic identification system (AIS), a large amount of ship-related data has been provided for marine transportation analysis. Generally, AIS reports the type information of ships, but there are still many ships with type unknown in AIS data. It is necessary to develop algorithms which can identify ship type from AIS data. In this paper, we employ random forest to classify ships according to the static information from AIS messages. Moreover, the importance of static features is discussed, which explains the reason why some classes of ships are misclassified. The method of this paper is proved to be effective in ship classification using static information.


Sign in / Sign up

Export Citation Format

Share Document