Some Fixed Point Theorems in Metrically Convex Spaces

2000 ◽  
Vol 7 (3) ◽  
pp. 523-530 ◽  
Author(s):  
M. S. Khan ◽  
H. K. Pathak ◽  
M. D. Khan

Abstract A fixed point theorem is proved in a complete metrically convex metric space. Our result generalizes the theorems of Assad [Tamkang J. Math. 7: 91–94, 1976] and Chatterjea [C.R. Acad., Bulgare Sci. 25: 727–730, 1972].

2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


2020 ◽  
Vol 5 (5) ◽  
pp. 40-44
Author(s):  
Umesh Rajopadhyaya ◽  
K. Jha

In this paper, we establish a common fixed point theorem for three pairs of self mappings in semi-metric space using compatible mappings of type (R) which improves and extends similar known results in the literature.


2015 ◽  
Vol 31 (3) ◽  
pp. 297-305
Author(s):  
FLORIN BOJOR ◽  
◽  
MAGNOLIA TILCA ◽  

Let (X, d) be a metric space endowed with a graph G such that the set V (G) of vertices of G coincides with X. We define the notion of G-Zamfirescu maps and obtain a fixed point theorem for such mappings. This extends and subsumes many recent results which were obtained for mappings on metric spaces endowed with a graph and for cyclic operators.


2020 ◽  
Vol 36 (2) ◽  
pp. 179-188
Author(s):  
M. AAMRI ◽  
K. CHAIRA ◽  
S. LAZAIZ ◽  
EL-M. MARHRANI ◽  
◽  
...  

In this paper, we use Szaz maximum principle to prove generalizations of Caristi fixed point theorem in a ´ preordered K-complete quasi metric space. Examples are given to support our results.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Nihal Taş ◽  
Nihal Yılmaz Özgür

We introduce the notion of a parametricS-metric space as generalization of a parametric metric space. Using some expansive mappings, we prove a fixed-point theorem on a parametricS-metric space. It is important to obtain new fixed-point theorems on a parametricS-metric space because there exist some parametricS-metrics which are not generated by any parametric metric. We expect that many mathematicians will study various fixed-point theorems using new expansive mappings (or contractive mappings) in a parametricS-metric space.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
K. P. R. Rao ◽  
K. R. K. Rao

We obtain two triple fixed point theorems for a multimap in a Hausdorff fuzzy metric space.


Author(s):  
Ljubomir Ćirić

AbstractGeneral periodic and fixed point theorems are proved for a class of self maps of a quasi-metric space which satisfy the contractive definition (A) below. Two examples are presented to show that the class of mappings which satisfy (A) is indeed wider than a class of selfmaps which satisfy Caristi's contractive definition (C) below. Also a common fixed point theorem for a pair of maps which satisfy a contractive condition (D) below is established.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Nizar Souayah ◽  
Mehdi Mrad

Recently, Mlaiki et al. introduced the notion of a controlled metric type space which is a generalization of the b-metric space. In this work, we define the controlled partial metric type space and give some fixed-point theorems for extensions of Kannan contraction in this space with suitable conditions. Moreover, as an application, we derive a fixed-point theorem for graphic contraction on the considered metric space endowed with a graph.


2013 ◽  
Vol 46 (1) ◽  
Author(s):  
Luljeta Kikina ◽  
Kristaq Kikina

AbstractA generalized metric space has been defined by Branciari as a metric space in which the triangle inequality is replaced by a more general inequality. Subsequently, some classical metric fixed point theorems have been transferred to such a space. In this paper, we continue in this direction and prove a version of Fisher’s fixed point theorem in generalized metric spaces.


Author(s):  
B. E. Rhoades ◽  
S. Sessa ◽  
M. S. Khan ◽  
M. D. Khan

The first result establishes a fixed point theorem for three maps of a complete metric space. The contractive definition is a generalization of that of Hardy and Rogers, and the commuting condition of Jungck is replaced by the concept of weakly commuting. The other results are extensions of some theorems of Kannan.


Sign in / Sign up

Export Citation Format

Share Document