scholarly journals On Fixed-Point Results in Controlled Partial Metric Type Spaces with a Graph

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Nizar Souayah ◽  
Mehdi Mrad

Recently, Mlaiki et al. introduced the notion of a controlled metric type space which is a generalization of the b-metric space. In this work, we define the controlled partial metric type space and give some fixed-point theorems for extensions of Kannan contraction in this space with suitable conditions. Moreover, as an application, we derive a fixed-point theorem for graphic contraction on the considered metric space endowed with a graph.

2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 240 ◽  
Author(s):  
Memet Şahin ◽  
Abdullah Kargın ◽  
Mehmet Ali Çoban

2020 ◽  
pp. 805-810
Author(s):  
Liqaa J. Khaleel ◽  
Buthainah A. A. Ahmed

In this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.


Filomat ◽  
2020 ◽  
Vol 34 (14) ◽  
pp. 4811-4819
Author(s):  
Salvador Romaguera

We obtain a fixed point theorem for complete fuzzy metric spaces, in the sense of Kramosil and Michalek, that extends the classical Kannan fixed point theorem. We also show that, in fact, our theorem allows to characterize the fuzzy metric completeness, extending in this way the well-known Reich-Subrahmanyam theorem that a metric space is complete if and only if every Kannan contraction on it has a fixed point.


Author(s):  
Valeriu Popa ◽  
Alina-Mihaela Patriciu

In this paper, a general fixed point theorem for two pairs of absorbing mappings in weak partial metric space, using implicit relations, has been proved.


2020 ◽  
Vol 5 (5) ◽  
pp. 40-44
Author(s):  
Umesh Rajopadhyaya ◽  
K. Jha

In this paper, we establish a common fixed point theorem for three pairs of self mappings in semi-metric space using compatible mappings of type (R) which improves and extends similar known results in the literature.


2015 ◽  
Vol 31 (3) ◽  
pp. 297-305
Author(s):  
FLORIN BOJOR ◽  
◽  
MAGNOLIA TILCA ◽  

Let (X, d) be a metric space endowed with a graph G such that the set V (G) of vertices of G coincides with X. We define the notion of G-Zamfirescu maps and obtain a fixed point theorem for such mappings. This extends and subsumes many recent results which were obtained for mappings on metric spaces endowed with a graph and for cyclic operators.


2020 ◽  
Vol 36 (2) ◽  
pp. 179-188
Author(s):  
M. AAMRI ◽  
K. CHAIRA ◽  
S. LAZAIZ ◽  
EL-M. MARHRANI ◽  
◽  
...  

In this paper, we use Szaz maximum principle to prove generalizations of Caristi fixed point theorem in a ´ preordered K-complete quasi metric space. Examples are given to support our results.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Nihal Taş ◽  
Nihal Yılmaz Özgür

We introduce the notion of a parametricS-metric space as generalization of a parametric metric space. Using some expansive mappings, we prove a fixed-point theorem on a parametricS-metric space. It is important to obtain new fixed-point theorems on a parametricS-metric space because there exist some parametricS-metrics which are not generated by any parametric metric. We expect that many mathematicians will study various fixed-point theorems using new expansive mappings (or contractive mappings) in a parametricS-metric space.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
K. P. R. Rao ◽  
K. R. K. Rao

We obtain two triple fixed point theorems for a multimap in a Hausdorff fuzzy metric space.


Sign in / Sign up

Export Citation Format

Share Document