scholarly journals On Appel-Type Quadrature Rules

2002 ◽  
Vol 9 (3) ◽  
pp. 405-412
Author(s):  
C. Belingeri ◽  
B. Germano

Abstract The Radon technique is applied in order to recover a quadrature rule based on Appel polynomials and the so called Appel numbers. The relevant formula generalizes both the Euler-MacLaurin quadrature rule and a similar rule using Euler (instead of Bernoulli) numbers and even (instead of odd) derivatives of the given function at the endpoints of the considered interval. In the general case, the remainder term is expressed in terms of Appel numbers, and all derivatives appear. A numerical example is also included.

Author(s):  
Fangyi Li ◽  
Changjing Shang ◽  
Ying Li ◽  
Jing Yang ◽  
Qiang Shen

AbstractApproximate reasoning systems facilitate fuzzy inference through activating fuzzy if–then rules in which attribute values are imprecisely described. Fuzzy rule interpolation (FRI) supports such reasoning with sparse rule bases where certain observations may not match any existing fuzzy rules, through manipulation of rules that bear similarity with an unmatched observation. This differs from classical rule-based inference that requires direct pattern matching between observations and the given rules. FRI techniques have been continuously investigated for decades, resulting in various types of approach. Traditionally, it is typically assumed that all antecedent attributes in the rules are of equal significance in deriving the consequents. Recent studies have shown significant interest in developing enhanced FRI mechanisms where the rule antecedent attributes are associated with relative weights, signifying their different importance levels in influencing the generation of the conclusion, thereby improving the interpolation performance. This survey presents a systematic review of both traditional and recently developed FRI methodologies, categorised accordingly into two major groups: FRI with non-weighted rules and FRI with weighted rules. It introduces, and analyses, a range of commonly used representatives chosen from each of the two categories, offering a comprehensive tutorial for this important soft computing approach to rule-based inference. A comparative analysis of different FRI techniques is provided both within each category and between the two, highlighting the main strengths and limitations while applying such FRI mechanisms to different problems. Furthermore, commonly adopted criteria for FRI algorithm evaluation are outlined, and recent developments on weighted FRI methods are presented in a unified pseudo-code form, easing their understanding and facilitating their comparisons.


Author(s):  
Stefan Steinerberger

Abstract We study manifolds $M$ equipped with a quadrature rule \begin{equation*} \int_{M}{\phi(x)\,\mathrm{d}x} \simeq \sum_{i=1}^{n}{a_i \phi(x_i)}.\end{equation*}We show that $n$-point quadrature rules with nonnegative weights on a compact $d$-dimensional manifold cannot integrate more than at most the 1st $c_{d}n + o(n)$ Laplacian eigenfunctions exactly. The constants $c_d$ are explicitly computed and $c_2 = 4$. The result is new even on $\mathbb{S}^2$ where it generalizes results on spherical designs.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1358
Author(s):  
Shumin Man ◽  
Qiang Gao ◽  
Wanxie Zhong

Variational integrators for dynamic systems with holonomic constraints are proposed based on Hamilton’s principle. The variational principle is discretized by approximating the generalized coordinates and Lagrange multipliers by Lagrange polynomials, by approximating the integrals by quadrature rules. Meanwhile, constraint points are defined in order to discrete the holonomic constraints. The functional of the variational principle is divided into two parts, i.e., the action of the unconstrained term and the constrained term and the actions of the unconstrained term and the constrained term are integrated separately using different numerical quadrature rules. The influence of interpolation points, quadrature rule and constraint points on the accuracy of the algorithms is analyzed exhaustively. Properties of the proposed algorithms are investigated using examples. Numerical results show that the proposed algorithms have arbitrary high order, satisfy the holonomic constraints with high precision and provide good performance for long-time integration.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Luis M. Navas ◽  
Francisco J. Ruiz ◽  
Juan L. Varona

The Bernoulli polynomialsBkrestricted to[0,1)and extended by periodicity haventh sine and cosine Fourier coefficients of the formCk/nk. In general, the Fourier coefficients of any polynomial restricted to[0,1)are linear combinations of terms of the form1/nk. If we can make this linear combination explicit for a specific family of polynomials, then by uniqueness of Fourier series, we get a relation between the given family and the Bernoulli polynomials. Using this idea, we give new and simpler proofs of some known identities involving Bernoulli, Euler, and Legendre polynomials. The method can also be applied to certain families of Gegenbauer polynomials. As a result, we obtain new identities for Bernoulli polynomials and Bernoulli numbers.


2013 ◽  
Vol 816-817 ◽  
pp. 786-789
Author(s):  
Shi Yi Li ◽  
Wen Pu Shi

Geometric analyses and mechanical analytical method are used to study a kind of D-type driving mechanism. The theoretical formulae of computing angular velocities of the connecting rod and the rocker are given, and the linear velocity of the driving point C is obtained, and the finite differential numerical method for computing the angular velocities of the connecting rod and the rocker is also introduced. The results of the given numerical example show the feasibility of the theoretical conclusions here.


2006 ◽  
Vol 2006 ◽  
pp. 1-13
Author(s):  
Bablu Samanta ◽  
Sanat Kumar Mazumder

A gravity model for trip distribution describes the number of trips between two zones, as a product of three factors, one of the factors is separation or deterrence factor. The deterrence factor is usually a decreasing function of the generalized cost of traveling between the zones, where generalized cost is usually some combination of the travel, the distance traveled, and the actual monetary costs. If the deterrence factor is of the power form and if the total number of origins and destination in each zone is known, then the resulting trip matrix depends solely on parameter, which is generally estimated from data. In this paper, it is shown that as parameter tends to infinity, the trip matrix tends to a limit in which the total cost of trips is the least possible allowed by the given origin and destination totals. If the transportation problem has many cost-minimizing solutions, then it is shown that the limit is one particular solution in which each nonzero flow from an origin to a destination is a product of two strictly positive factors, one associated with the origin and other with the destination. A numerical example is given to illustrate the problem.


2007 ◽  
Vol 48 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Roy B. Leipnik ◽  
Charles E. M. Pearce

AbstractThe Faà di Bruno formulæ for higher-order derivatives of a composite function are important in analysis for a variety of applications. There is a substantial literature on the univariate case, but despite significant applications the multivariate case has until recently received limited study. We present a succinct result which is a natural generalization of the univariate version. The derivation makes use of an explicit integralform of the remainder term for multivariate Taylor expansions.


2019 ◽  
Vol 13 (2) ◽  
pp. 463-477
Author(s):  
Aleksandar Pejcev ◽  
Ljubica Mihic

Starting from the explicit expression of the corresponding kernels, derived by Gautschi and Li (W. Gautschi, S. Li: The remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadrature rules with multiple end points, J. Comput. Appl. Math. 33 (1990) 315{329), we determine the exact dimensions of the minimal ellipses on which the modulus of the kernel starts to behave in the described way. The effective error bounds for Gauss- Radau and Gauss-Lobatto quadrature formulas with double end point(s) are derived. The comparisons are made with the actual errors.


Sign in / Sign up

Export Citation Format

Share Document