scholarly journals The multivariate Faà di Bruno formula and multivariate Taylor expansions with explicit integral remainder term

2007 ◽  
Vol 48 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Roy B. Leipnik ◽  
Charles E. M. Pearce

AbstractThe Faà di Bruno formulæ for higher-order derivatives of a composite function are important in analysis for a variety of applications. There is a substantial literature on the univariate case, but despite significant applications the multivariate case has until recently received limited study. We present a succinct result which is a natural generalization of the univariate version. The derivation makes use of an explicit integralform of the remainder term for multivariate Taylor expansions.

2020 ◽  
Author(s):  
Feng Qi

In the paper, by virtue of the Faa di Bruno formula and several properties of the Bell polynomials of the second kind, the author computes higher order derivatives of the generating function of convolved Fibonacci numbers and, consequently, derives three closed forms for convolved Fibonacci numbers in terms of the falling and rising factorials, the Lah numbers, the signed Stirling numbers of the first kind, and the golden ratio.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo

Abstract In this paper, by the Faà di Bruno formula and properties of Bell polynomials of the second kind, the authors reconsider the generating functions of Hermite polynomials and their squares, find an explicit formula for higher-order derivatives of the generating function of Hermite polynomials, and derive explicit formulas and recurrence relations for Hermite polynomials and their squares.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Yan Wang ◽  
Muhammet Cihat Dağli ◽  
Xi-Min Liu ◽  
Feng Qi

In the paper, by virtue of the Faà di Bruno formula, with the aid of some properties of the Bell polynomials of the second kind, and by means of a general formula for derivatives of the ratio between two differentiable functions, the authors establish explicit, determinantal, and recurrent formulas for generalized Eulerian polynomials.


2002 ◽  
Vol 9 (3) ◽  
pp. 405-412
Author(s):  
C. Belingeri ◽  
B. Germano

Abstract The Radon technique is applied in order to recover a quadrature rule based on Appel polynomials and the so called Appel numbers. The relevant formula generalizes both the Euler-MacLaurin quadrature rule and a similar rule using Euler (instead of Bernoulli) numbers and even (instead of odd) derivatives of the given function at the endpoints of the considered interval. In the general case, the remainder term is expressed in terms of Appel numbers, and all derivatives appear. A numerical example is also included.


1995 ◽  
Vol 5 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Mark P. Jones

AbstractThis paper describes a flexible type system that combines overloading and higher-order polymorphism in an implicitly typed language using a system of constructor classes—a natural generalization of type classes in Haskell. We present a range of examples to demonstrate the usefulness of such a system. In particular, we show how constructor classes can be used to support the use of monads in a functional language. The underlying type system permits higher-order polymorphism but retains many of the attractive features that have made Hindley/Milner type systems so popular. In particular, there is an effective algorithm that can be used to calculate principal types without the need for explicit type or kind annotations. A prototype implementation has been developed providing, amongst other things, the first concrete implementation of monad comprehensions known to us at the time of writing.


2017 ◽  
Vol 21 (6) ◽  
pp. 1820-1842
Author(s):  
Wu Zhen ◽  
Ma Rui ◽  
Chen Wanji

This paper will try to overcome two difficulties encountered by the C0 three-node triangular element based on the displacement-based higher-order models. They are (i) transverse shear stresses computed from constitutive equations vanish at the clamped edges, and (ii) it is difficult to accurately produce the transverse shear stresses even using the integration of the three-dimensional equilibrium equation. Invalidation of the equilibrium equation approach ought to attribute to the higher-order derivations of displacement parameters involved in transverse shear stress components after integrating three-dimensional equilibrium equation. Thus, the higher-order derivatives of displacement parameters will be taken out from transverse shear stress field by using the three-field Hu–Washizu variational principle before the finite element procedure is implemented. Therefore, such method is named as the preprocessing method for transverse shear stresses in present work. Because the higher-order derivatives of displacement parameters have been eliminated, a C0 three-node triangular element based on the higher-order zig-zag theory can be presented by using the linear interpolation function. Performance of the proposed element is numerically evaluated by analyzing multilayered sandwich plates with different loading conditions, lamination sequences, material constants and boundary conditions, and it can be found that the present model works well in the finite element framework.


1999 ◽  
Vol 61 (1) ◽  
pp. 121-128 ◽  
Author(s):  
I. P. SHKAROFSKY

To trace rays very close to the nth electron cyclotron harmonic, we need the mildly relativistic plasma dispersion function and its higher-order derivatives. Expressions for these functions have been obtained as an expansion for nearly perpendicular propagation in a region where computer programs have previously experienced difficulty in accuracy, namely when the magnitude of (c/vt)2 (ω−nωc)/ω is between 1 and 10. In this region, the large-argument expansions are not yet valid, but partial cancellations of terms occur. The expansion is expressed as a sum over derivatives of the ordinary dispersion function Z. New expressions are derived to relate higher-order derivatives of Z to Z itself in this region of concern in terms of a finite series.


1991 ◽  
Vol 7 (3) ◽  
pp. 404-408 ◽  
Author(s):  
K. Ben Nowman

This paper is concerned with deriving formulae for higher order derivatives of exogenous variables for use in estimating the parameters of an open secondorder continuous time model with mixed stock and flow data and first and second order derivatives of exogenous variables which are not observable. This should provide the basis for the future estimation of continuous time models in a range of applied areas using the new Gaussian estimation computer program developed by Nowman [4].


Sign in / Sign up

Export Citation Format

Share Document