scholarly journals On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application

Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 286
Author(s):  
Kyle R. Bryenton ◽  
Andrew R. Cameron ◽  
Keegan L. A. Kirk ◽  
Nasser Saad ◽  
Patrick Strongman ◽  
...  

The analysis of many physical phenomena is reduced to the study of linear differential equations with polynomial coefficients. The present work establishes the necessary and sufficient conditions for the existence of polynomial solutions to linear differential equations with polynomial coefficients of degree n, n−1, and n−2 respectively. We show that for n≥3 the necessary condition is not enough to ensure the existence of the polynomial solutions. Applying Scheffé’s criteria to this differential equation we have extracted n generic equations that are analytically solvable by two-term recurrence formulas. We give the closed-form solutions of these generic equations in terms of the generalized hypergeometric functions. For arbitrary n, three elementary theorems and one algorithm were developed to construct the polynomial solutions explicitly along with the necessary and sufficient conditions. We demonstrate the validity of the algorithm by constructing the polynomial solutions for the case of n=4. We also demonstrate the simplicity and applicability of our constructive approach through applications to several important equations in theoretical physics such as Heun and Dirac equations.

2004 ◽  
Vol 35 (4) ◽  
pp. 383-389
Author(s):  
Zhi-Qiang Zhu ◽  
Sui Sun Cheng

Necessary and sufficient conditions are derived for the existence of asymptotically polynomial solutions of a class of neutral functional differential equations.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


2004 ◽  
Vol 11 (3) ◽  
pp. 409-414
Author(s):  
C. Belingeri

Abstract A recursion formula for the coefficients of entire functions which are solutions of linear differential equations with polynomial coefficients is derived. Some explicit examples are developed. The Newton sum rules for the powers of zeros of a class of entire functions are constructed in terms of Bell polynomials.


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


Author(s):  
N. Parhi

AbstractIn this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.


Sign in / Sign up

Export Citation Format

Share Document