scholarly journals Characterization for Rectifiable and Nonrectifiable Attractivity of Nonautonomous Systems of Linear Differential Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Yūki Naito ◽  
Mervan Pašić

We study a new kind of asymptotic behaviour near for the nonautonomous system of two linear differential equations: , , where the matrix-valued function has a kind of singularity at . It is called rectifiable (resp., nonrectifiable) attractivity of the zero solution, which means that as and the length of the solution curve of is finite (resp., infinite) for every . It is characterized in terms of certain asymptotic behaviour of the eigenvalues of near . Consequently, the main results are applied to a system of two linear differential equations with polynomial coefficients which are singular at .

2004 ◽  
Vol 11 (3) ◽  
pp. 409-414
Author(s):  
C. Belingeri

Abstract A recursion formula for the coefficients of entire functions which are solutions of linear differential equations with polynomial coefficients is derived. Some explicit examples are developed. The Newton sum rules for the powers of zeros of a class of entire functions are constructed in terms of Bell polynomials.


Author(s):  
Ch. G. Philos

SynopsisThis paper deals with the oscillatory and asymptotic behaviour of all solutions of a class of nth order (n > 1) non-linear differential equations with deviating arguments involving the so called nth order r-derivative of the unknown function x defined bywhere r1, (i = 0,1,…, n – 1) are positive continuous functions on [t0, ∞). The results obtained extend and improve previous ones in [7 and 15] even in the usual case where r0 = r1 = … = rn–1 = 1.


2008 ◽  
Vol 144 (2) ◽  
pp. 484-494 ◽  
Author(s):  
Yves André

AbstractThis is a study of the asymptotic behaviour of solutions of p-adic linear differential equations near the boundary of their convergence disks. We prove Dwork’s conjecture on the logarithmic growth of solutions in generic versus special disks.


1. The present paper is suggested by that of Dr. H. F. Baker in the ‘Proceedings of the London Mathematical Society,’ vol. xxxv., p. 333, “On the Integration of Linear Differential Equations.” In that paper a linear ordinary differential equation of order n is considered as derived from a system of n linear simultaneous differential equations dx i / dt = u i1 x +.....+ u i n x n ( i = 1... n ), or, in abbreviated notation, dx / dt = ux , where u is a square matrix of n rows and columns whose elements are functions of t , and x denotes a column of n independent variables. A symbolic solution of this system is there given and denoted by the symbol Ω( u ). This is a matrix of n rows and columns formed from u as follows :—Q ( ϕ ) is the matrix of which each element is the t -integral from t 0 to t of the corresponding element of ϕ , ϕ being any matrix of n rows and columns; then Ω( u ) = 1+Q u +Q u Q u +Q u Q u Q u ..... ad inf ., where the operator Q affects the whole of the part following it in any term.


Sign in / Sign up

Export Citation Format

Share Document