Growth and Approximation of Entire Harmonic Functions in 𝑅𝑛, 𝑛 > 3

2008 ◽  
Vol 15 (1) ◽  
pp. 99-110
Author(s):  
Devendra Kumar

Abstract We study the growth of functions which are harmonic in any number of variables. The results are expressed in terms of spherical harmonic coefficients as well as by the approximation error of the harmonic function with (𝑝, 𝑞)-growth.

2020 ◽  
Vol 13 (2) ◽  
pp. 258-268
Author(s):  
Devendra Kumar ◽  
Rajeev Kumar Vishnoi

Coefficient characterizations of generalized order, lower order and generalized type of entire harmonic function having the spherical harmonic expansion throughout a neighborhood of the origin in Rn have been obtained in terms of norm of gradients at origin.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
M. T. Mustafa

For Riemannian manifoldsMandN, admitting a submersionϕwith compact fibres, we introduce the projection of a function via its decomposition into horizontal and vertical components. By comparing the Laplacians onMandN, we determine conditions under which a harmonic function onU=ϕ−1(V)⊂Mprojects down, via its horizontal component, to a harmonic function onV⊂N.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Anders Karlsson

International audience We obtain a new result concerning harmonic functions on infinite Cayley graphs $X$: either every nonconstant harmonic function has infinite radial variation in a certain uniform sense, or there is a nontrivial boundary with hyperbolic properties at infinity of $X$. In the latter case, relying on a theorem of Woess, it follows that the Dirichlet problem is solvable with respect to this boundary. Certain relations to group cohomology are also discussed.


2020 ◽  
Vol 498 (1) ◽  
pp. 223-234
Author(s):  
Sedighe Sajadian ◽  
Richard Ignace

ABSTRACT We study the microlensing of non-radially pulsating (NRP) stars. Pulsations are formulated for stellar radius and temperature using spherical harmonic functions with different values of l, m. The characteristics of the microlensing light curves from NRP stars are investigated in relation to different pulsation modes. For the microlensing of NRP stars, the light curve is not a simple multiplication of the magnification curve and the intrinsic luminosity curve of the source star, unless the effect of finite source size can be ignored. Three main conclusions can be drawn from the simulated light curves. First, for modes with m ≠ 0 and when the viewing inclination is more nearly pole-on, the stellar luminosity towards the observer changes little with pulsation phase. In this case, high-magnification microlensing events are chromatic and can reveal the variability of these source stars. Secondly, some combinations of pulsation modes produce nearly degenerate luminosity curves (e.g. (l, m) = (3, 0), (5, 0)). The resulting microlensing light curves are also degenerate, unless the lens crosses the projected source. Finally, for modes involving m = 1, the stellar brightness centre does not coincide with the coordinate centre, and the projected source brightness centre moves in the sky with pulsation phase. As a result of this time-dependent displacement in the brightness centroid, the time of the magnification peak coincides with the closest approach of the lens to the brightness centre as opposed to the source coordinate centre. Binary microlensing of NRP stars and in caustic-crossing features are chromatic.


1948 ◽  
Vol 44 (2) ◽  
pp. 289-291 ◽  
Author(s):  
S. Verblunsky

If H(ξ, η) is a harmonic function which is defined and positive in η > 0, then there is a non-negative number D and a bounded non-decreasing function G(x) such that(For a proof, see Loomis and Widder, Duke Math. J. 9 (1942), 643–5.) If we writewhere λ > 1, then the equationdefines a harmonic function h which is positive in υ > 0. Hence there is a non-negative number d and a bounded non-decreasing function g(x) such thatThe problem of finding the connexion between the functions G(x) and g(x) has been mentioned by Loomis (Trans. American Math. Soc. 53 (1943), 239–50, 244).


2019 ◽  
Vol 149 (6) ◽  
pp. 1577-1594
Author(s):  
Clifford Gilmore ◽  
Eero Saksman ◽  
Hans-Olav Tylli

AbstractWe solve a problem posed by Blasco, Bonilla and Grosse-Erdmann in 2010 by constructing a harmonic function on ℝN, that is frequently hypercyclic with respect to the partial differentiation operator ∂/∂xk and which has a minimal growth rate in terms of the average L2-norm on spheres of radius r > 0 as r → ∞.


1997 ◽  
Vol 49 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Huaihui Chen ◽  
Paul M. Gauthier

AbstractFor ameromorphic (or harmonic) function ƒ, let us call the dilation of ƒ at z the ratio of the (spherical)metric at ƒ(z) and the (hyperbolic)metric at z. Inequalities are knownwhich estimate the sup norm of the dilation in terms of its Lp norm, for p > 2, while capitalizing on the symmetries of ƒ. In the present paper we weaken the hypothesis by showing that such estimates persist even if the Lp norms are taken only over the set of z on which ƒ takes values in a fixed spherical disk. Naturally, the bigger the disk, the better the estimate. Also, We give estimates for holomorphic functions without zeros and for harmonic functions in the case that p = 2.


1862 ◽  
Vol 23 (1) ◽  
pp. 21-27
Author(s):  
Joseph D. Everett

1. It is a well-known property of simple harmonic functions, that the sum of any two or more of them having the same period, is itself a simple harmonic function having the same period as its components. The same thing must be true of their mean, since this is equal to the sum divided by a constant; and it will still be true when the number of components is indefinitely great, and the mean becomes an integral.


Sign in / Sign up

Export Citation Format

Share Document