scholarly journals Quantum chemical studies on structural, spectroscopic, nonlinear optical, and thermodynamic properties of the 1,2,4-triazole compound

2021 ◽  
Vol 27 (1) ◽  
pp. 112-132
Author(s):  
Hilal Medetalibeyoğlu ◽  
Haydar Yüksek

Abstract In this study, the structure of 4-[4-(diethylamino)-benzylideneamino]-5-benzyl-2H-1,2,4-triazol-3(4H)-one (DBT) was examined through spectroscopic and theoretical analyses. In this respect, the geometrical, vibrational frequency, 1H and 13C-nuclear magnetic resonance (NMR) chemical shifts, thermodynamic, hyperpolarizability, and electronic properties including the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energies of DBT as a potential non-linear optical (NLO) material were investigated using density functional theory at the B3LYP level with the 6-311G basis set. 1H and 13C-NMR chemical shifts of DBT with the gauge-invariant atomic orbital and continuous set of gauge transformation methods (in the solvents) were estimated, and the computed chemical shift values displayed excellent alignment with observed ones. Time-dependent density-functional theory (TD-DFT) calculations with the integral equation formalism polarizable continuum model within various solvents and gas phases in the ground state were used to evaluate UV-vis absorption and fluorescence emission wavelengths. Thermodynamic parameters including enthalpy, heat capacity, and entropy for DBT were also calculated at various temperatures. Moreover, calculations of the NLO were carried out to obtain the title compound’s electric dipole moment and polarizability properties. To illustrate the effect of the theoretical method on the spectroscopic and structural properties of DBT, experimental data of structural and spectroscopic parameters were used. The correlational analysis results were observed to indicate a strong relationship between the experimental and theoretical results.

2019 ◽  
Vol 10 (2) ◽  
pp. 95-101
Author(s):  
Sebile Işık Büyükekşi ◽  
Namık Özdemir ◽  
Abdurrahman Şengül

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


2020 ◽  
Vol 12 (3) ◽  
pp. 364-370
Author(s):  
Sara Sâmitha Souza ◽  
Mariana Aparecida de Souza Martins ◽  
Antonio Maia de Jesus Chaves Neto ◽  
Gunar Vingre Da Silva Mota ◽  
Fabio Luiz Paranhos Costa

Density-functional theory calculations of the magnetic shielding for nuclear magnetic resonance provide an important contribution to understand the experimental values obtained in laboratory for chemical shifts present in the samples. From of a comparative of the performance of ten hybrid functional within of the framework of the density-functional theory using 10 different hybrid functionals with 3-21G (B1), 6-31G(d) (B2) and 6-31+ G(d, p) (B3) basis set, with intuit of evaluating of performance of the 13 C nuclear magnetic resonance from a representative of the terpene class and a heterocyclic compound, (–)-loliolide ((7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H1-benzofuran-2-one). This molecule, satisfactorily, represents the main structure of this class, with conformational freedom, optical activity and a benzofuran nucleus. The ωB97X-D, MPW1K and HSEH1PBE functionals presented the best calculation performance. It is interesting to note that after the use of linear regressions all root mean square error values for ωB97X-D were lower than 3 ppm. These are 2.91 ppm (B1), 2.46 (B2) ppm and 2.62 ppm (B3). The information contained in this work can be used for the assignment of experimental nuclear magnetic resonance spectra and will motivate further studies involving the theoretical calculation of the chemical shift of 13C.


2019 ◽  
Vol 10 (1) ◽  
pp. 144
Author(s):  
Amit Kumar ◽  
Roberto Baccoli ◽  
Antonella Fais ◽  
Alberto Cincotti ◽  
Luca Pilia ◽  
...  

Coumarin derivatives have gathered major attention largely due to their versatile utility in a wide range of applications. In this framework, we report a comparative computational investigation on the optoelectronic properties of 3-phenylcoumarin and 3-heteroarylcoumarin derivatives established as enzyme inhibitors. Specifically, we concentrate on the variation in the optoelectronic characteristics for the hydroxyl group substitutions within the coumarin moiety. In order to realize our aims, all-electron density functional theory and time dependent density functional theory calculations were performed with a localized Gaussian basis-set matched with a hybrid exchange–correlation functionals. Molecular properties such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, vertical ionization (IEV) and electron affinity energies, absorption spectra, quasi-particle gap, and exciton binding energy values are examined. Furthermore, the influence of solvent on the optical properties of the molecules is considered. We found a good agreement between the experimental (8.72 eV) and calculated (8.71 eV) IEV energy values for coumarin. The computed exciton binding energy of the investigated molecules indicated their potential optoelectronics application.


2013 ◽  
Vol 58 (2) ◽  
pp. 321-323 ◽  
Author(s):  
N. Nunomura ◽  
S. Sunada

In order to understand the first steps of the aqueous corrosion of iron, we have performed density functional theory (DFT) based calculations for water molecules and pre-covered oxygen on iron surface. The surface structure is modeled by iron atomic layer and vacuum region, and then oxygen atom and water molecules are displaced on the surface. Self consistent DFT calculations were performed using a numerical atomic orbital basis set and a norm-conserve pseudopotential method. According to our calculations, with increasing surface oxygen coverage, the iron surface is found to be not activated, which leads to a feeble adsorption of water molecules on iron surface. Our results show that the surface covered oxygen exerts an influence on the adsorption of water molecules on iron surface.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 163
Author(s):  
Nguyen Van Trang ◽  
Tran Ngoc Dung ◽  
Ngo Tuan Cuong ◽  
Le Thi Hong Hai ◽  
Daniel Escudero ◽  
...  

A class of D-π-A compounds that can be used as dyes for applications in polymer solar cells has theoretically been designed and studied, on the basis of the dyes recently shown by experiment to have the highest power conversion efficiency (PCE), namely the poly[4,8-bis(5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTS-TZNT) and poly[4,8-bis(4-fluoro-5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTSF-TZNT) substances. Electronic structure theory computations were carried out with density functional theory and time-dependent density functional theory methods in conjunction with the 6−311G (d, p) basis set. The PBDTS donor and the TZNT (naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole)) acceptor components were established from the original substances upon replacement of long alkyl groups within the thiophene and azole rings with methyl groups. In particular, the effects of several π-spacers were investigated. The calculated results confirmed that dithieno[3,2-b:2′,3′-d] silole (DTS) acts as an excellent π-linker, even better than the thiophene bridge in the original substances in terms of well-known criteria. Indeed, a PBDTS-DTS-TZNT combination forms a D-π-A substance that has a flatter structure, more rigidity in going from the neutral to the cationic form, and a better conjugation than the original compounds. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of such a D-π-A substance becomes smaller and its absorption spectrum is more intense and red-shifted, which enhances the intramolecular charge transfer and makes it a promising candidate to attain higher PCEs.


2015 ◽  
Vol 17 (18) ◽  
pp. 12367-12367
Author(s):  
Tong Zhu ◽  
Xiao He ◽  
John Z. H. Zhang

Correction for ‘Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation’ by Tong Zhu et al., Phys. Chem. Chem. Phys., 2012, 14, 7837–7845.


Sign in / Sign up

Export Citation Format

Share Document