iron surface
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 45)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Shuangzan Lu ◽  
Min Huang ◽  
Guodong Huang ◽  
Qinmin Guo ◽  
Hongxing Li ◽  
...  

Manipulation of artificial molecular rotors/motors is a key issue in the field of molecular nanomachine. Here we assemble non-planar SnPc molecules on FeO film to form two kinds of rotors...


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1217
Author(s):  
Andrei Nazarov ◽  
Maxim Petrunin ◽  
Liudmila Maksaeva ◽  
Tatyana Yurasova ◽  
Pierluigi Traverso ◽  
...  

The mechanism of iron corrosion protection by thin siloxane films was clarified. Quartz crystal microbalance technique (QCM) was applied to control the vapour phase deposition of alkoxysilanes and the formation of thin siloxane films. It was shown that the addition of water vapour increased the thickness of the grafted siloxane films. Crystal-like films spontaneously grow to 10–16 monolayers at 100% RH of Ar flow due to the catalytic effect of the surface. X-ray photoelectron (XPS) and Auger spectroscopies analysed the thin siloxane films and Scanning Kelvin Probe (SKP) showed the formation of iron-siloxane bonds passivating the iron surface. The films showed high hydrophobicity and corrosion inhibition in humid air contaminated by sulphur dioxide. Thick films were less ordered, hydrophilic and accelerated the corrosion of iron. For corrosion protection, the presence of oxygen in the atmosphere is extremely important. In a wet Ar atmosphere, contaminated by sulphur dioxide, the surfaces are not stable and quickly corroded. Oxygen adsorption stabilizes the surface oxide film that correspondingly preserves the anchoring iron-siloxane bonds and enables corrosion protection by the coating.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhen Zuo ◽  
Lifen Liang ◽  
Qianqian Bao ◽  
Pengtao Yan ◽  
Xin Jin ◽  
...  

During the friction process, the polytetrafluoroethylene (PTFE) adhered on the counterpart surface was known as the PTFE transfer film, which was fundamental to the lubricating performance of the PTFE. However, the adhesive interaction between the iron surface and the adhered PTFE transfer film is still unclear. In present study, molecular dynamics simulations were used to reveal the adhesive interaction between the iron surface and PTFE transfer film. Based on the atomic trajectories obtained through the molecular dynamics, the interaction energy, concentration profile, radial distribution function, and mean square displacement were calculated to analyze the structure of the interface. The negative values of the interaction energy demonstrated the adhesive interaction between the PTFE transfer film and Fe surfaces, resulting in the accumulation of the PTFE transfer film on the Fe surface. Among the (100) (110), and (111) surfaces of α-Fe (110) surface owns the strongest adhesive interaction with the PTFE transfer film. Compared with the original PTFE molecule, the chain broken PTFE, hydroxyl substituted PTFE, and carbonyl substituted PTFE exhibited stronger adhesive interaction with Fe surface. The adhesive interaction between the PTFE transfer film and Fe surfaces was mainly originated from the Fe atoms and the F atoms of the adsorbate PTFE transfer film, which was governed by the van der Waals force. The bonding distance between the Fe atom and the F atom of the adsorbate PTFE transfer film is around 2.8 Å. Moreover, the chain broken of PTFE molecule and the rise of temperature can remarkably increase the mobility of polymer chains in the interface system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huichen Yang ◽  
Rui Hu ◽  
Hans Ruppert ◽  
Chicgoua Noubactep

AbstractSolid iron corrosion products (FeCPs), continuously generated from iron corrosion in Fe0-based permeable reactive barriers (PRB) at pH > 4.5, can lead to significant porosity loss and possibility of system’s failure. To avoid such failure and to estimate the long-term performance of PRBs, reliable models are required. In this study, a mathematical model is presented to describe the porosity change of a hypothetical Fe0-based PRB through-flowed by deionized water. The porosity loss is solely caused by iron corrosion process. The new model is based on Faraday’s Law and considers the iron surface passivation. Experimental results from literature were used to calibrate the parameters of the model. The derived iron corrosion rates (2.60 mmol/(kg day), 2.07 mmol/(kg day) and 1.77 mmol/(kg day)) are significantly larger than the corrosion rate used in previous modeling studies (0.4 mmol/(kg day)). This suggests that the previous models have underestimated the impact of in-situ generated FeCPs on the porosity loss. The model results show that the assumptions for the iron corrosion rates on basis of a first-order dependency on iron surface area are only valid when no iron surface passivation is considered. The simulations demonstrate that volume-expansion by Fe0 corrosion products alone can cause a great extent of porosity loss and suggests careful evaluation of the iron corrosion process in individual Fe0-based PRB.


2021 ◽  
Vol 543 ◽  
pp. 148604
Author(s):  
Ivan Lobzenko ◽  
Yoshinori Shiihara ◽  
Yoshitaka Umeno ◽  
Yoshikazu Todaka

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 282
Author(s):  
Aleksandra Kotarska

The article presents the results of the laser alloying process of ductile cast iron EN-GJS 350-22 surface with titanium. The laser alloying process was conducted on 2 kW high power diode laser (HPDDL) Rofin Sinar DL02 with rectangular focus and uniform power density distribution in the focus axis. The laser alloying was conducted with constant laser beam power and processing speed with titanium powder feed rate variation. The tests of the produced surface layers included macrostructure and microstructure observations, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis, Vickers hardness, and solid particle erosion according to ASTM G76-04 standard. To assess the erosion mechanism, SEM observations of worn surfaces after erosive test were carried out. As a result of laser alloying of a ductile cast iron surface, the in situ metal-matrix composite structure was formed with TiC reinforcing particles. The microstructure change resulted in the increase of surface layers hardness and erosion resistance in comparison to the base material.


2021 ◽  
Vol 179 ◽  
pp. 109101
Author(s):  
Harshal Mehta ◽  
Gurpreet Kaur ◽  
Ganga Ram Chaudhary ◽  
Nirmal Prabhakar

Sign in / Sign up

Export Citation Format

Share Document