aqueous corrosion
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 4)

10.30544/745 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 531-539
Author(s):  
P. Bharath Sreevatsava ◽  
E. Vara Prasad ◽  
A. Sai Deepak Kumar ◽  
Mohammad Fayaz Anwar ◽  
Vadapally Rama Rao ◽  
...  

Austenitic Stainless steels are majorly used because of their high resistance to aqueous corrosion and high temperature properties. Some major applications of stainless steels at high temperatures include engine and exhaust components in aircrafts, recuperators in steel mills, and pulverized coal injection lances for blast furnaces. In all the above said applications, the components are constantly subjected to loads and high temperatures. This makes the study of their creep behavior very important to decide the life of the component. Cr-Ni stainless steel was used as a starting material, and hot impression creep test was performed on cylindrical samples of 10 mm height and 15 mm diameter for a dwell time of 150 min at two different loads of 84 and 98 MPa and at two different temperatures 450 and 500 °C. The time vs. indentation depth was plotted, and creep rate was calculated in each case. It was observed that with an increase in time, creep rate increased in the primary creep region and remained almost constant in the secondary creep region irrespective of temperature and load. The indentation depth and creep rate increased with an increase in load and temperature.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5418
Author(s):  
Libor Ďuriška ◽  
Ivona Černičková ◽  
Pavol Priputen ◽  
Marián Palcut

Complex metallic alloys (CMAs) are materials composed of structurally complex intermetallic phases (SCIPs). The SCIPs consist of large unit cells containing hundreds or even thousands of atoms. Well-defined atomic clusters are found in their structure, typically of icosahedral point group symmetry. In SCIPs, a long-range order is observed. Aluminum-based CMAs contain approximately 70 at.% Al. In this paper, the corrosion behavior of bulk Al-based CMAs is reviewed. The Al–TM alloys (TM = transition metal) have been sorted according to their chemical composition. The alloys tend to passivate because of high Al concentration. The Al–Cr alloys, for example, can form protective passive layers of considerable thickness in different electrolytes. In halide-containing solutions, however, the alloys are prone to pitting corrosion. The electrochemical activity of aluminum-transition metal SCIPs is primarily determined by electrode potential of the alloying element(s). Galvanic microcells form between different SCIPs which may further accelerate the localized corrosion attack. The electrochemical nobility of individual SCIPs increases with increasing concentration of noble elements. The SCIPs with electrochemically active elements tend to dissolve in contact with nobler particles. The SCIPs with noble metals are prone to selective de-alloying (de–aluminification) and their electrochemical activity may change over time as a result of de-alloying. The metal composition of the SCIPs has a primary influence on their corrosion properties. The structural complexity is secondary and becomes important when phases with similar chemical composition, but different crystal structure, come into close physical contact.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Talha Qasim Ansari ◽  
Haitao Huang ◽  
San-Qiang Shi

AbstractThe complex degradation of metallic materials in aggressive environments can result in morphological and microstructural changes. The phase-field (PF) method is an effective computational approach to understanding and predicting the morphology, phase change and/or transformation of materials. PF models are based on conserved and non-conserved field variables that represent each phase as a function of space and time coupled with time-dependent equations that describe the mechanisms. This report summarizes progress in the PF modeling of degradation of metallic materials in aqueous corrosion, hydrogen-assisted cracking, high-temperature metal oxidation in the gas phase and porous structure evolution with insights to future applications.


2021 ◽  
pp. 117042
Author(s):  
Junliang Liu ◽  
Guanze He ◽  
Anne Callow ◽  
Kexue Li ◽  
Katie L. Moore ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Lu Deng ◽  
Katsuaki Miyatani ◽  
Michinori Suehara ◽  
Shin-ichi Amma ◽  
Madoka Ono ◽  
...  

AbstractThe ion-exchange and associated interfacial reaction mechanisms of silicate glasses are critical in elucidating their aqueous corrosion behaviors, surface modification and property changes, hence have potential impact on both science and technology. This work reports findings of the atomic and nanoscale details of the glass–water interfacial reactions revealed by applying reactive force field (ReaxFF) based molecular dynamics (MD) simulations, from which the key mechanisms of the ion exchange, as well as the kinetics of associated interfacial reactions, are elucidated. It was found that the Na+ and H+ ion exchange can happen between two oxygen ions on a single silicon oxygen tetrahedron or adjacent tetrahedra. In addition, the clustered reaction of two non-bridging oxygens mediated by an adjacent water molecule was also identified. The latter reaction might be the main mechanism of water transport after initial surface reactions that consume the non-bridging oxygen species on the surface. Water molecules thus can play two roles: as an intermediate during the proton transfer processes and as a terminator of the clustered reactions. Statistical analyses were performed to obtain reaction kinetics and the results show that silanol formation is a more favored process than the silanol re-formation within the first 3 ns of interfacial reactions. The results obtained thus shed lights on the complex ion-exchange mechanisms during glass hydration and enable more detailed understanding of the corrosion and glass–water interactions of silicate glasses.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1974
Author(s):  
Xuelin Li ◽  
Zhengzheng Wang ◽  
Sadman Sakib ◽  
Ritch Mathews ◽  
Igor Zhitomirsky

A dip-coating technique is designed for deposition of poly(methyl methacrylate) (PMMA) from water/2-propanol mixture, avoiding the use of traditional toxic solvents. Solutions of PMMA macromolecules with high molecular weight (MW) are obtained for a water/2-propanol ratio of 0.15–0.33 and the solubilization mechanism is discussed. The ability to use concentrated PMMA solutions and high MW of the polymer are the key factors for the successful dip coating deposition. The coating mass for 10 g L−1 polymer solutions shows a maximum at a water/2-propanol ratio of 0.25. The deposition yield increases with the polymer concentration increase and with an increasing number of the deposited layers. PMMA deposits protect stainless steel from aqueous corrosion. The coating technique allows for the fabrication of composite coatings, containing flame-retardant materials (FRMs), such as commercial halloysite, huntite, hydrotalcite, and synthesized Al(OH)3, in the PMMA matrix. The FRM content in the coatings is modified by variation of the FRM content in colloidal suspensions. A fundamentally new method is developed, which is based on the salting out aided dispersive extraction of Al(OH)3 from the aqueous synthesis medium to 2-propanol. It is based on the use of hexadecylphosphonic acid molecules as extractors. The method offers advantages of reduced agglomeration.


Sign in / Sign up

Export Citation Format

Share Document