Studies on electrooxidation of lignin and lignin model compounds. Part 1: Direct electrooxidation of non-phenolic lignin model compounds
Abstract The direct anodic oxidation of non-phenolic lignin model compounds was investigated to understand their basic behaviors. The results of cyclic voltammetry (CV) studies of monomeric model, such as 1-(4-ethoxy-3-methoxyphenyl)ethanol, are interpreted as the oxidation for Cα-carbonylation did not proceed in the reaction without a catalyst, but a base promotes this reaction. Indeed, the bulk electrolyses of the monomeric lignin model compounds with 2,6-lutidine afforded the corresponding Cα-carbonyl compounds in high yields (60–80%). It is suggested that deprotonation at Cα-H in the ECEC mechanism (E=electron transfer and C=chemical step) is important for Cα-carbonylation. In the uncatalyzed bulk electrolysis of a β-O-4 model dimeric compound, 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether, the corresponding Cα-carbonyl compound was not detected but as a result of Cα-Cβcleavage 4-O-ethylvanillin was found in 40% yield. In the electrolysis reaction in the presence of 2,6-lutidine (as a sterically hindered light base), the reaction stopped for a short time unexpectedly. These results indicate the different electrochemical behavior of simple monomeric model compounds and dimeric β-O-4 models. The conclusion is that direct electrooxidation is unsuitable for Cα-carbonylation of lignin.