lignin model compound
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 47)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 15 (1) ◽  
pp. 151-159
Author(s):  
Marcia Gabriely A. da Cruz ◽  
Bruno V. M. Rodrigues ◽  
Andjelka Ristic ◽  
Serhiy Budnyk ◽  
Shoubhik Das ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1508
Author(s):  
Tetiana Kulik ◽  
Nataliia Nastasiienko ◽  
Borys Palianytsia ◽  
Mykola Ilchenko ◽  
Mats Larsson

Studies of the thermochemical properties of the important model compound of lignin-ferulic acid (FA) and its surface complexes are substantial for developing technologies for catalytic pyrolysis of renewable biomass into biofuels and lignin-derived chemicals as well as for bio-oil upgrading. In this work, the catalytic pyrolysis of ferulic acid over alumina was studied by temperature-programmed desorption mass spectrometry (TPD MS), in situ FT-IR spectroscopy, thermogravimetric analysis, and DFT calculations. We established that both the carboxyl group and the active groups (HO and CH3O) of the aromatic ring interact with the alumina surface. We calculated the kinetic parameters of formation of the main products of catalytic pyrolysis: 4-vinylguaiacol, guaiacol, hydroxybenzene, benzene, toluene, cresol, naphthalene, and PACs. Possible methods of their forming from the related surface complexes of FA are suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chenxian Yang ◽  
Lingling Ma ◽  
Xin Wang ◽  
Yuqi Xing ◽  
Xin Lü

Identifying the enzymes involved in lignin degradation by bacteria is important in studying lignin valorization to produce renewable chemical products. In this paper, the catalytic oxidation of lignin by a novel multi-copper polyphenol oxidoreductase (OhLac) from the lignin degrader Ochrobactrum sp. J10 was explored. Following its expression, reconstitution, and purification, a recombinant enzyme OhLac was obtained. The OhLac enzyme was characterized kinetically against a range of substrates, including ABTS, guaiacol, and 2,6-DMP. Moreover, the effects of pH, temperature, and Cu2+ on OhLac activity and stability were determined. Gas chromatography-mass spectrometer (GC-MS) results indicated that the β-aryl ether lignin model compound guaiacylglycerol-β-guaiacyl ether (GGE) was oxidized by OhLac to generate guaiacol and vanillic acid. Molecular docking analysis of GGE and OhLac was then used to examine the significant amino residues and hydrogen bonding sites in the substrate–enzyme interaction. Altogether, we were able to investigate the mechanisms involved in lignin degradation. The breakdown of the lignocellulose materials wheat straw, corn stalk, and switchgrass by the recombinant OhLac was observed over 3 days, and the degradation results revealed that OhLac plays a key role in lignin degradation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicole Ing ◽  
Kai Deng ◽  
Yan Chen ◽  
Martina Aulitto ◽  
Jennifer W. Gin ◽  
...  

AbstractLignocellulosic biomass is composed of three major biopolymers: cellulose, hemicellulose and lignin. Analytical tools capable of quickly detecting both glycan and lignin deconstruction are needed to support the development and characterization of efficient enzymes/enzyme cocktails. Previously we have described nanostructure-initiator mass spectrometry-based assays for the analysis of glycosyl hydrolase and most recently an assay for lignin modifying enzymes. Here we integrate these two assays into a single multiplexed assay against both classes of enzymes and use it to characterize crude commercial enzyme mixtures. Application of our multiplexed platform based on nanostructure-initiator mass spectrometry enabled us to characterize crude mixtures of laccase enzymes from fungi Agaricus bisporus (Ab) and Myceliopthora thermophila (Mt) revealing activity on both carbohydrate and aromatic substrates. Using time-series analysis we determined that crude laccase from Ab has the higher GH activity and that laccase from Mt has the higher activity against our lignin model compound. Inhibitor studies showed a significant reduction in Mt GH activity under low oxygen conditions and increased activities in the presence of vanillin (common GH inhibitor). Ultimately, this assay can help to discover mixtures of enzymes that could be incorporated into biomass pretreatments to deconstruct diverse components of lignocellulosic biomass.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Shirong Sun ◽  
Tomoya Yokoyama

AbstractMonomeric C6-C2-type lignin model compounds with a p-hydroxyphenyl (H), guaiacyl (G), syringyl (S), or p-ethylphenyl (E) nucleus (1-phenylethanol derivatives) were individually oxidized by MnO2 at a pH of 1.5 and room temperature. The results were compared with those of the corresponding C6-C1-type benzyl alcohol derivatives obtained in our recent report to examine the effect of the presence of the β-methyl group on the oxidation. The presence decelerated the oxidation regardless of the type of aromatic nucleus, although it did not change the order of the oxidation rates: G > S >> H > E. This deceleration results from the steric factor of the β-methyl group in the C6-C2-type compounds. The MnO2 oxidations of the corresponding C6-C2-type compounds deuterated at their α-(benzyl)positions showed that the magnitudes of the kinetic isotope effects are smaller than those observed in the oxidations of the corresponding C6-C1-type compounds, regardless of the type of aromatic nucleus. These smaller magnitudes suggest that the presence of the β-methyl group shifts the initial oxidation mode of MnO2 from direct oxidation of the benzyl position to one-electron oxidation of the aromatic nucleus. Only the S-type compounds afforded products via degradation of the aromatic nuclei.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 497
Author(s):  
Patrycja Kwaśniewska-Sip ◽  
Magdalena Woźniak ◽  
Wojciech Jankowski ◽  
Izabela Ratajczak ◽  
Grzegorz Cofta

Earlier studies have revealed that wood treated with caffeine was effectively protected against decay fungi and molds. However, there is a need to establish how the caffeine molecule behaves after wood impregnation and how it can protect wood. The objective of the research was to characterize the interaction between caffeine and Scots pine (Pinus sylvestris L.) wood as well as to assess the stability of the alkaloid molecule in lignocellulosic material. For this purpose, an elementary analyzer was used to assess the nitrogen concentration in the treated wood. The results showed that caffeine is easily removed from the wood structure through large amounts of water. The changes occurring in the wood structure after impregnation were evaluated with regard to the results obtained by Fourier transform infrared (FTIR) spectroscopy of two model mixtures with caffeine and cellulose or lignin for the purpose of conducting a comparison with the spectrum of impregnated and non-impregnated samples. The observed changes in FTIR spectra involve the intensity of the C=O(6) caffeine carbonyl group and signals from guaiacyl units. It might indicate favorable interactions between caffeine and lignin. Additionally, molecular simulation of the caffeine’s interaction with the guaiacyl β-O-4 lignin model compound characteristic for the lignin structure using computational studies was performed. Consequently, all analyses confirmed that caffeine may interact with the methylene group derived from the aromatic rings of the guaiacyl group of lignin. In summary, scanning electron microscope (SEM) observations suggest that caffeine was accumulated in the lignin-rich areas of the primary walls.


2021 ◽  
Vol 168 (1) ◽  
pp. 016504
Author(s):  
Haomin Jiang ◽  
Yujuan Cheng ◽  
Zhaohui Wang ◽  
Zhiqun Bai ◽  
Yang Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document