Soret-Dufour effects on MHD rotating flow of a viscoelastic fluid

Author(s):  
T. Hayat ◽  
R. Naz ◽  
S. Asghar ◽  
A. Alsaedi

Purpose – The purpose of this paper is to study the heat and mass transfer with Soret-Dufour effects for the magnetohydrodynamic three-dimensional flow of second grade fluid in the rotating frame of reference. Design/methodology/approach – Series solution is obtained by homotopy analysis method. Findings – Increase in Soret number, Schmidt number and Dufour number, the heat transfer increases and mass transfer decreases. Effects of Prandtl and Eckert numbers are qualitatively similar as they assist the temperature profile and reduce the concentration of species. Increase in the length of the channel versus height increases the temperature profile but decreases the concentration field. Increase in the second grade fluid parameter causes reduction in both the temperature and concentration fields. The heat flux values at the lower plate are smaller than the values at the upper plate, whereas the situation is opposite in the case of mass transfer. Originality/value – These findings will be useful for the fluid flow in porous channel.

2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 683-691 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Nawaz

An analysis has been carried out for the heat transfer on steady boundary layer flow of a secondgrade fluid bounded by a stretching sheet. The magnetohydrodynamic nature of the fluid is considered in the presence of Hall and ion-slip currents. The nonlinear mathematical problem is computed by a powerful tool, namely, the homotopy analysis method (HAM). A comparative study between the present and existing limiting results is carefully made. Convergence regarding the obtained solution is discussed. Skin friction coefficients and Nusselt number are analyzed. Effects of embedded parameters on the dimensionless velocities and temperature are examined


2011 ◽  
Vol 66 (10-11) ◽  
pp. 635-642 ◽  
Author(s):  
Tasawar Hayat ◽  
Ambreen Safdar ◽  
Muhammad Awais ◽  
Awatif A. Hendi

The three-dimensional unsteady flow induced in a second-grade fluid over a stretching surface has been investigated. Nonlinear partial differential equations are reduced into a system of ordinary differential equations by using the similarity transformations. The homotopy analysis method (HAM) has been implemented for the series solutions. Graphs are displayed for the effects of different parameters on the velocity field.


2008 ◽  
Vol 75 (6) ◽  
Author(s):  
Ahmer Mehmood ◽  
Asif Ali

We present a purely analytic solution to the steady three-dimensional viscous stagnation point flow of second grade fluid over a heated flat plate moving with some constant speed. The analytic solution is obtained by a newly developed analytic technique, namely, homotopy analysis method. By giving a comparison with the existing results, it is shown that the obtained analytic solutions are highly accurate and are in good agreement with the results already present in literature. Also, the present analytic solution is uniformly valid for all values of the dimensionless second grade parameter α. The effects of α and the Prandtl number Pr on velocity and temperature profiles are discussed through graphs.


CFD Letters ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 35-52
Author(s):  
Mohamad Alif Ismail ◽  
Mohamad Hidayad Ahmad Kamal ◽  
Lim Yeou Jiann ◽  
Anati Ali ◽  
Sharidan Shafie

The study of mass transfer in the non-Newtonian fluid is essential in understanding the engine lubrication, the cooling system of electronic devices, and the manufacturing process of the chemical industry. Optimal performance of the practical applications requires the appropriate conditions. The unsteady transient free convective flow of second-grade fluid with mass transfer and wall transpiration is concerned in the present communication. The behavior of the second-grade fluid under the influence of injection or suction is discussed. Suitable non-dimensional variables are utilized to transform the governing equations into non-dimensional governing equations. A Maple solver “pdsolve” that is using the centered implicit scheme of a finite difference method is utilized to solve the dimensionless governing equations numerically. The effects of wall injection or suction parameter, second-grade fluid viscoelastic parameter, Schmidt number, and modified Grashof number on the velocity and concentration profiles are graphically displayed and analyzed. The results show that with increasing wall suction, viscoelastic parameter, and Schmidt number, the velocity and concentration profiles decrease. Whereas, the velocity profiles show an opposite tendency in situations of wall injection. The wall suction has increased the skin friction and also the rate of mass diffusion in the second-grade fluid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Iskandar Waini ◽  
Syazwani Mohd Zokri ◽  
Abdul Rahman Mohd Kasim ◽  
Norihan Md Arifin ◽  
...  

Purpose This paper aims to accentuate the behavior of second-grade hybrid Al2O3–Cu nanofluid flow and its thermal characteristics driven by a stretching/shrinking Riga plate. Design/methodology/approach The second-grade fluid is considered with the combination of Cu and Al2O3 nanoparticles. Three base fluids namely water, ethylene glycol (EG) and methanol with different Prandtl number are also examined. The formulation of the mathematical model of second-grade hybrid nanofluid complies with the boundary layer approximations. The complexity of the governing model is reduced into a simpler differential equations using the similarity transformation. The bvp4c solver is fully used to solve the reduced equations. The observation of multiple solutions is conducted for the assisting (stretching) and opposing (shrinking) cases. Findings The impact of suction parameter, second-grade parameter, electromagnetohydrodynamics (EMHD) parameter, velocity ratio parameter and the volumetric concentration of the alumina and copper nanoparticles are numerically analyzed on the velocity and temperature profiles, skin friction coefficient and local Nusselt number (thermal rate) of the second-grade Al2O3–Cu/water. The solution is unique when (static and stretching cases) while dual for a specific range of negative in the presence of suction effect. Based on the appearance of the first solution in all cases of, it is physically showed that the first solution is stable. Further examination reveals that the EMHD and suction parameters are the contributing factors for the thermal enhancement of this non-Newtonian working fluid. Meanwhile, the viscosity of the non-Newtonian fluid also plays a significant role in the fluid motion and heat transfer rate based on the finding that the EG base fluid produces the maximum heat transfer rate but the lowest critical value and skin friction coefficient. Originality/value The results are novel and contribute to the discovery of the hybrid nanoparticles’ performance in the non-Newtonian second-grade fluid. Besides, this study is beneficial to the researchers in this field and general audience from industries regarding the factors, which contributing to the thermal enhancement of the working fluid.


2020 ◽  
Vol 30 (9) ◽  
pp. 4331-4347 ◽  
Author(s):  
Ambreen A. Khan ◽  
S. Naeem ◽  
R. Ellahi ◽  
Sadiq M. Sait ◽  
K. Vafai

Purpose This study aims to investigate the effect of two-dimensional Darcy-Forchheimer flow over second-grade fluid with linear stretching. Heat transfer through convective boundary conditions is taken into account. Design/methodology/approach Nonlinear coupled governing equations are tackled with a homotopy algorithm, while for numerical computation the computer software package BVPh 2.0 is used. The convergence analysis is also presented for the validation of analytical and numerical results. Findings Valuation for the impact of key parameters such as variable thermal conductivity, Dufour and Soret effects and variable magnetic field in an electrically conducted fluid on the velocity, concentration and temperature profiles are graphically illustrated. It is observed from the results that temperature distribution rises by Dufour number whereas concentration distribution rises by Soret number. The Forchheimer number and porosity parameter raise the skin friction coefficient. The permeable medium has a vital impact and can help in reining the rate of heat transfer. Practical implications The permeable medium has a vital impact and can help in reining the rate of heat transfer. Originality/value To the best of the authors’ knowledge, this study is reported for the first time.


2019 ◽  
Vol 29 (8) ◽  
pp. 2948-2963 ◽  
Author(s):  
Muhammad Waqas ◽  
Muhammad Mudassar Gulzar ◽  
Zeeshan Asghar ◽  
Z. Ali ◽  
Waqar Azeem Khan ◽  
...  

Purpose The purpose of this study is to elaborate mixed convection impact in stratified nanofluid flow by convectively heated moving surface. Rheological relations of second-grade fluid are used for formulation. Magnetic field, heat absorption/generation and convective conditions are considered for modeling. Design/methodology/approach Convergent solutions are achieved using homotopy procedure. Findings The authors found opposing behavior for radiation and thermal stratification variables against thermal field. Originality/value No such analysis has yet been reported.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 553 ◽  
Author(s):  
Muhammad Afzal Rana ◽  
Yasar Ali ◽  
Babar Ahmad ◽  
Muhammad Touseef Afzal Rana

This work explores the three-dimensional laminar flow of an incompressible second-grade fluid between two parallel infinite plates. The assumed suction velocity comprises a basic steady dispersal with a superimposed weak transversally fluctuating distribution. Because of variation of suction velocity in transverse direction on the wall, the problem turns out to be three-dimensional. Analytic solutions for velocity field, pressure and skin friction are presented and effects of dimensionless parameters emerging in the model are discussed. It is observed that the non-Newtonian parameter plays dynamic part to rheostat the velocity component along main flow direction.


Sign in / Sign up

Export Citation Format

Share Document