scholarly journals Optimal and/or Efficient Two treatment Crossover Designs for Five Carryover Models

Author(s):  
Jigneshkumar Gondaliya ◽  
Jyoti Divecha

Abstract Crossover designs robust to changes in carryover models are useful in clinical trials where the nature of carryover effects is not known in advance. The designs have been characterized for being optimal and efficient under no carryover-, traditional-, and, self and mixed carryover- models, however, ignoring the number of subjects, which has significant impact on both optimality and administrative convenience. In this article, adding two more practical models, the traditional, and, self and mixed carryover models having carryover effect only for the new or test treatment, a 5M algorithm is presented. The 5M algorithm based computer code searches all possible two treatment crossover designs under the five carryover models and list those which are optimal and /or efficient to all the five carryover models. The resultant exhaustive list consists of optimal and/or efficient crossover designs in two, three, and four periods, having 4 to 20 subjects of which 24 designs are new optimal for one of the established carryover models, and 34 designs are optimal for newly added models.

2021 ◽  
Vol 15 (4) ◽  
Author(s):  
C. Neumann ◽  
J. Kunert

AbstractIn crossover designs, each subject receives a series of treatments, one after the other in p consecutive periods. There is concern that the measurement of a subject at a given period might be influenced not only by the direct effect of the current treatment but also by a carryover effect of the treatment applied in the preceding period. Sometimes, the periods of a crossover design are arranged in a circular structure. Before the first period of the experiment itself, there is a run-in period, in which each subject receives the treatment it will receive again in the last period. No measurements are taken during the run-in period. We consider the estimate for direct effects of treatments which is not corrected for carryover effects. If there are carryover effects, this uncorrected estimate will be biased. In that situation, the quality of the estimate can be measured by the mean square error, the sum of the squared bias and the variance. We determine MSE-optimal designs, that is, designs for which the mean square error is as small as possible. Since the optimal design will in general depend on the size of the carryover effects, we also determine the efficiency of some designs compared to the locally optimal design. It turns out that circular neighbour-balanced designs are highly efficient.


Healthcare ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 137 ◽  
Author(s):  
J. Blackston ◽  
Andrew Chapple ◽  
James McGree ◽  
Suzanne McDonald ◽  
Jane Nikles

Background: N-of-1 trials offer an innovative approach to delivering personalized clinical care together with population-level research. While increasingly used, these methods have raised some statistical concerns in the healthcare community. Methods: We discuss concerns of selection bias, carryover effects from treatment, and trial data analysis conceptually, then rigorously evaluate concerns of effect sizes, power and sample size through simulation study. Four variance structures for patient heterogeneity and model error are considered in a series of 5000 simulated trials with 3 cycles, which compare aggregated N-of-1 trials to parallel randomized controlled trials (RCTs) and crossover trials. Results: Aggregated N-of-1 trials outperformed both traditional parallel RCT and crossover designs when these trial designs were simulated in terms of power and required sample size to obtain a given power. N-of-1 designs resulted in a higher type-I error probability than parallel RCT and cross over designs when moderate-to-strong carryover effects were not considered or in the presence of modeled selection bias. However, N-of-1 designs allowed better estimation of patient-level random effects. These results reinforce the need to account for these factors when planning N-of-1 trials. Conclusion: N-of-1 trial designs offer a rigorous method for advancing personalized medicine and healthcare with the potential to minimize costs and resources. Interventions can be tested with adequate power with far fewer patients than traditional RCT and crossover designs. Operating characteristics compare favorably to both traditional RCT and crossover designs.


Sign in / Sign up

Export Citation Format

Share Document