Allocation of Capacitors and Voltage Regulators in Unbalanced Distribution Systems: A Multi-objective Problem in Probabilistic Frameworks

2014 ◽  
Vol 15 (6) ◽  
pp. 557-568 ◽  
Author(s):  
Guido Carpinelli ◽  
Christian Noce ◽  
Angela Russo ◽  
Pietro Varilone

Abstract Capacitors and series voltage regulators are used extensively in distribution systems to reduce power losses and improve the voltage profile along the feeders. This paper deals with the problem of contemporaneously choosing optimal locations and sizes for both capacitors and series voltage regulators in three-phase, unbalanced distribution systems. This is a mixed, non-linear, constrained, multi-objective optimization problem that usually is solved in deterministic scenarios. However, distribution systems are stochastic in nature, which can lead to inaccurate deterministic solutions. To take into account the unavoidable uncertainties that affect the input data related to the problem, in this paper, we have formulated and solved the multi-objective optimization problem in probabilistic scenarios. To address the multi-objective optimization problem, algorithms were used in which all the objective functions were combined to form a single function. These algorithms allow us to transform the original multi-objective optimization problem into an equivalent, single-objective, optimization problem, an approach that appeared to be particularly suitable since computational time was an important issue. To further reduce the computational efforts, a linearized form of the equality constraints of the optimization model was used, and a micro-genetic algorithm-based procedure was applied in the solution method.

2019 ◽  
Vol 22 (3) ◽  
Author(s):  
Ivo Benitez Cattani

In this paper two reconfiguration methodologies for three-phase electric power distribution systems based on multi-objective optimization algorithms are developed in order to simultaneously optimize two objective functions, (1) power losses and (2) three-phase unbalanced voltage minimization. The proposed optimization involves only radial topology configurations which is the most common configuration in electric distribution systems. The formulation of the problem considers the radiality as a constraint, increasing the computational complexity. The Prim and Kruskal algorithms are tested to fix infeasible configurations. In distribution systems, the three-phase unbalanced voltage and power losses limit the power supply to the loads and may even cause overheating in distribution lines, transformers and other equipment. An alternative to solve this problem is through a reconfiguration process, by opening and/or closing switches altering the distribution system configuration under operation. Hence, in this work the three-phase unbalanced voltage and power losses in radial distribution systems are addressed as a multi-objective optimization problem, firstly, using a method based on weighted sum; and, secondly, implementing NSGA-II algorithm. An example of distribution system is presented to prove the effectiveness of the proposed method.


2019 ◽  
Vol 13 (1) ◽  
pp. 98-127 ◽  
Author(s):  
Arulraj Rajendran ◽  
Kumarappan Narayanan

PurposeThis paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as to achieve enhanced operation of distribution system. The multi-objective optimization problem comprises three important objective functions such as minimization of total active power loss (Plosstotal), reduction of voltage deviation and balancing of current through feeder sections.Design/methodology/approachIn this study, a hybrid configuration of weight improved particle swarm optimization (WIPSO) and gravitational search algorithm (GSA) called hybrid WIPSO-GSA algorithm is proposed in multi-objective problem domain. To solve multi-objective optimization problem, the proposed hybrid WIPSO-GSA algorithm is integrated with two components. The first component is fixed-sized archive that is responsible for storing a set of non-dominated pareto optimal solutions and the second component is a leader selection strategy that helps to update and identify the best compromised solution from the archive.FindingsThe proposed methodology is tested on standard 33-bus and Indian 85-bus distribution systems. The results attained using proposed multi-objective hybrid WIPSO-GSA algorithm provides potential technical and economic benefits and its best compromised solution outperforms other commonly used multi-objective techniques, thereby making it highly suitable for solving multi-objective problems.Originality/valueA novel multi-objective hybrid WIPSO-GSA algorithm is proposed for optimal DG and capacitor planning in radial distribution network. The results demonstrate the usefulness of the proposed technique in improved distribution system planning and operation and also in achieving better optimized results than other existing multi-objective optimization techniques.


KURVATEK ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 111-117
Author(s):  
Sugiarto Sugiarto

This paper presents a multi-objective function for optimal placement of distributed generation (DG) resources in distribution systems in order to minimize the power losses and improve voltage profile. Particle swarm optimization (PSO) and weight method are applied to the proposed technique to obtain the best compromise between these costs. Simulation results on IEEE 30-bus test system are presented to demonstrate the usefulness of the proposed procedure.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


2021 ◽  
pp. 1-13
Author(s):  
Hailin Liu ◽  
Fangqing Gu ◽  
Zixian Lin

Transfer learning methods exploit similarities between different datasets to improve the performance of the target task by transferring knowledge from source tasks to the target task. “What to transfer” is a main research issue in transfer learning. The existing transfer learning method generally needs to acquire the shared parameters by integrating human knowledge. However, in many real applications, an understanding of which parameters can be shared is unknown beforehand. Transfer learning model is essentially a special multi-objective optimization problem. Consequently, this paper proposes a novel auto-sharing parameter technique for transfer learning based on multi-objective optimization and solves the optimization problem by using a multi-swarm particle swarm optimizer. Each task objective is simultaneously optimized by a sub-swarm. The current best particle from the sub-swarm of the target task is used to guide the search of particles of the source tasks and vice versa. The target task and source task are jointly solved by sharing the information of the best particle, which works as an inductive bias. Experiments are carried out to evaluate the proposed algorithm on several synthetic data sets and two real-world data sets of a school data set and a landmine data set, which show that the proposed algorithm is effective.


Sign in / Sign up

Export Citation Format

Share Document