Reactive power and harmonic compensation in a grid-connected photovoltaic system using fuzzy logic controller

2021 ◽  
Vol 22 (2) ◽  
pp. 161-175
Author(s):  
Maheswar Prasad Behera ◽  
Pravat Kumar Ray

Abstract This work investigates the performance of a single-phase grid-connected photovoltaic (PV) system under non-ideal source voltage conditions using a fuzzy logic controller. The single-phase instantaneous reactive power theory has been modified to explore the harmonic and reactive power compensation with distorted grid voltage excitation while transferring active and reactive power to the grid and the non-linear load. Instead of a traditional Proportional-Integral (PI) controller, the proposed method implements a fuzzy logic controller for the extraction of the reference compensating current. This method is compared with the traditional single-phase instantaneous reactive power theory. The advantage associated with a fuzzy logic controller is that it does not need accurate mathematical modeling of the system, instead, it is based upon the linguistic characterization of the input and output variables. Besides, care has been taken to provide uninterrupted compensation throughout the variation of the solar irradiation level. The proposed method has also been verified through a laboratory-developed prototype using a DS1103 processor.

2021 ◽  
Vol 675 (1) ◽  
pp. 012103
Author(s):  
Mengzhen Zhao ◽  
Jie Zhang ◽  
Xin Zhang ◽  
Wandong Zhou ◽  
Anfei Xu

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 429 ◽  
Author(s):  
Islam ◽  
Zeb ◽  
Din ◽  
Khan ◽  
Ishfaq ◽  
...  

This paper emphasizes the design and investigation of a new optimization scheme for a grid-connected photovoltaic system (PVS) under unbalance faults. The proposed scheme includes fuzzy logic controller (FLC) based on the Levenberg–Marquardt (LM) optimization technique in coordination with bridge-type-fault-current limiter (BFCL) as the fault ride through (FRT) Strategy. The LM optimization-based control is an iterative process with a fast and robust response and is always convergent. The BFCL reduces the fault currents to rated values without compromising at ripples. A keen and critical comparison of the designed strategy is carried out with a conventionally tuned proportional-integral (PI) controller in coordination with the crowbar FRT strategy. A 100kW MATLAB/Simulink model of a photovoltaic system is used for simulation and analysis of unbalance faults at the point of common-coupling (PCC) and at 5 km away from PCC. It is found that grid-connected PVS is highly influenced by the fault type and less effected by the distribution line length. The simulation results authenticated smooth, stable, ripples with free, robust, and fault-tolerant behavior of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document