symmetric component
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Salvatore Bottaro ◽  
Marco Costa ◽  
Oleg Popov

Abstract The goal of this work is to find the simplest UV completion of Accidental Composite Dark Matter Models (ACDM) that can dynamically generate an asymmetry for the DM candidate, the lightest dark baryon (DCb), and simultaneously annihilate the symmetric component. In this framework the DCb is a bound state of a confining SU(N)DC gauge group, and can interact weakly with the visible sector. The constituents of the DCb can possess non-trivial charges under the Standard Model gauge group. The generation of asymmetry for such candidate is a two-flavor variation of the out-of-equilibrium decay of a heavy scalar, with mass Mϕ ≳ 1010 GeV. Below the scale of the scalars, the models recover accidental stability, or long-livedness, of the DM candidate. The symmetric component is annihilated by residual confined interactions provided that the mass of the DCb mDCb ≲ 75 TeV. We implement the mechanism of asymmetry generation, or a variation of it, in all the original ACDM models, managing to generate the correct asymmetry for DCb of masses in this range. For some of the models found, the stability of the DM candidate is not spoiled even considering generic GUT completions or asymmetry generation mechanisms in the visible sector.


2021 ◽  
Author(s):  
Ruzica Cvetanovic ◽  
Zarko Janda

This paper proposes a new method for very fast extraction of symmetrical components.


2021 ◽  
Author(s):  
Ruzica Cvetanovic ◽  
Zarko Janda

This paper proposes a new method for very fast extraction of symmetrical components.


Author(s):  
Ariel E Marcy ◽  
Carmelo Fruciano ◽  
Matthew J Phillips ◽  
Karine Mardon ◽  
Vera Weisbecker

Background. Advances in three-dimensional (3D) shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (μCT) scanners have been the “gold standard,” recent improvements in 3D surface scanner resolution may make this technology a faster, more portable, and cost-effective alternative. Several studies have already compared the two scanning devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia’s smallest rodent species to test whether a 3D surface scanner produces similar results to a μCT scanner. Methods. We captured 19 delicate mouse crania with a μCT scanner and a 3D surface scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to understand how variation due to scan device compared to other sources of variation such as biologically relevant sources and operator error. We quantified operator error with morphological disparity and repeatability. Finally, we tested whether the different scan datasets could detect intra-specific variation using cross-validation classification. Shape patterns were visualized with Principal Component Analysis (PCA) plots. Results. In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. This is also reflected in the way individuals disperse on the PCA plots. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans create a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher morphological disparity, and a lower repeatability score. However, in the test for small intra-specific differences, the 3D scan and μCT scan datasets performed identically. Discussion. Compared to μCT scans, we find that even very low resolution 3D scans of very small specimens are sufficiently accurate to capture variation at the level of interspecific differences. We also make three recommendations for best use of low resolution data. First, we recommend analyzing the symmetric component of shape to decrease signal from operator error. Second, using 3D scans generates more random error due to increased landmarking difficulty, therefore be conservative in landmark choice and avoid multiple operators. Third, using 3D scans introduces a source of systematic error relative to μCT scans, therefore do not combine them when possible and especially in studies with little variation. Our findings support increased use of low resolution 3D images for most morphological studies; they are likely applicable to low resolution scans of large specimens made in a medical CT scanner, for example. As most vertebrates are relatively small, we anticipate our results to bolster more researchers designing affordable large scale studies on small specimens with 3D surface scanners.


Author(s):  
Ariel E Marcy ◽  
Carmelo Fruciano ◽  
Matthew J Phillips ◽  
Karine Mardon ◽  
Vera Weisbecker

Background. Advances in three-dimensional (3D) shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (μCT) scanners have been the “gold standard,” recent improvements in 3D surface scanner resolution may make this technology a faster, more portable, and cost-effective alternative. Several studies have already compared the two scanning devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia’s smallest rodent species to test whether a 3D surface scanner produces similar results to a μCT scanner. Methods. We captured 19 delicate mouse crania with a μCT scanner and a 3D surface scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to understand how variation due to scan device compared to other sources of variation such as biologically relevant sources and operator error. We quantified operator error with morphological disparity and repeatability. Finally, we tested whether the different scan datasets could detect intra-specific variation using cross-validation classification. Shape patterns were visualized with Principal Component Analysis (PCA) plots. Results. In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. This is also reflected in the way individuals disperse on the PCA plots. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans create a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher morphological disparity, and a lower repeatability score. However, in the test for small intra-specific differences, the 3D scan and μCT scan datasets performed identically. Discussion. Compared to μCT scans, we find that even very low resolution 3D scans of very small specimens are sufficiently accurate to capture variation at the level of interspecific differences. We also make three recommendations for best use of low resolution data. First, we recommend analyzing the symmetric component of shape to decrease signal from operator error. Second, using 3D scans generates more random error due to increased landmarking difficulty, therefore be conservative in landmark choice and avoid multiple operators. Third, using 3D scans introduces a source of systematic error relative to μCT scans, therefore do not combine them when possible and especially in studies with little variation. Our findings support increased use of low resolution 3D images for most morphological studies; they are likely applicable to low resolution scans of large specimens made in a medical CT scanner, for example. As most vertebrates are relatively small, we anticipate our results to bolster more researchers designing affordable large scale studies on small specimens with 3D surface scanners.


Sign in / Sign up

Export Citation Format

Share Document