Numerical Investigation of the Wave-Front Tracking Algorithm for the Full Ultra-Relativistic Euler Equations

Author(s):  
Mahmoud A.E. Abdelrahman

AbstractWe introduce a generalized version of the front tracking algorithm for the full ultra-relativistic Euler system. The construction and analysis of this algorithm are somewhat simpler than other algorithms. Moreover, this scheme leads to a more robust and efficient result. The scheme also satisfies positivity. This scheme is compared with other two schemes by two numerical test cases. Furthermore we give another application of this scheme, namely we check the explicit formula of interaction of two generalized shocks, by further numerical test case.

Author(s):  
Christopher Fuhrer ◽  
Marius Grübel ◽  
Damian M Vogt

At the Institute of Thermal Turbomachinery and Machniery Laboratory (ITSM) a generic test case was designed to investigate aeromechanical phenomena and condensation in low-pressure steam turbines. This test case, referred to as Steam turbine Test case for Aeromechanics and Condensation (STAC) consists of the two last stages of a low-pressure steam turbine and is representative for a modern steam turbine design. STAC is intended to serve as a numerical test case to allow studying the fields of aerodynamic damping and spontaneous condensation in low-pressure steam turbine last stages. The geometry of the turbine is made available online at www.itsm.uni-stuttgart.de/research/test-cases/ .


Sign in / Sign up

Export Citation Format

Share Document