Non-equidistant partition predictor–corrector method for fractional differential equations with exponential memory

Author(s):  
Hua Kong ◽  
Guo-Cheng Wu ◽  
Hui Fu ◽  
Kai-Teng Wu

Abstract A new class of fractional differential equations with exponential memory was recently defined in the space A C δ n [ a , b ] $A{C}_{\delta }^{n}\left[a,b\right]$ . In order to use the famous predictor–corrector method, a new quasi-linear interpolation with a non-equidistant partition is suggested in this study. New Euler and Adams–Moulton methods are proposed for the fractional integral equation. Error estimates of the generalized fractional integral and numerical solutions are provided. The predictor–corrector method for the new fractional differential equation is developed and numerical solutions of fractional nonlinear relaxation equation are given. It can be concluded that the non-equidistant partition is needed for non-standard fractional differential equations.

2021 ◽  
Author(s):  
Zaid Odibat

Abstract This study introduces some remarks on generalized fractional integral and differential operators, that generalize some familiar fractional integral and derivative operators, with respect to a given function. We briefly explain how to formulate representations of generalized fractional operators. Then, mainly, we propose a predictor-corrector algorithm for the numerical simulation of initial value problems involving generalized Caputo-type fractional derivatives with respect to another function. Numerical solutions of some generalized Caputo-type fractional derivative models have been introduced to demonstrate the applicability and efficiency of the presented algorithm. The proposed algorithm is expected to be widely used and utilized in the field of simulating fractional-order models.


2018 ◽  
Vol 21 (1) ◽  
pp. 174-189 ◽  
Author(s):  
Daniel Cao Labora ◽  
Rosana Rodríguez-López

Abstract In this work, we apply and extend our ideas presented in [4] for solving fractional integral equations with Riemann-Liouville definition. The approach made in [4] turned any linear fractional integral equation with constant coefficients and rational orders into a similar one, but with integer orders. If the right hand side was smooth enough we could differentiate at both sides to arrive to a linear ODE with constant coefficients and some initial conditions, that can be solved via an standard procedure. In this procedure, there were two major obstacles that did not allow to obtain a full result. These were the assumptions over the smoothness of the source term and the assumption about the rationality of the orders. So, one of the main topics of this document is to describe a modification of the procedure presented in [4], when the source term is not smooth enough to differentiate the required amount of times. Furthermore, we will also study the fractional integral equations with non-rational orders by a limit process of fractional integral equations with rational orders. Finally, we will connect the previous material with some fractional differential equations with Caputo derivatives described in [7]. For instance, we will deal with the fractional oscillation equation, the fractional relaxation equation and, specially, its particular case of the Basset problem. We also expose how to compute these solutions for the Riemann-Liouville case.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 667 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Madeaha Alghanmi ◽  
Bashir Ahmad ◽  
Sotiris Ntouyas

We develop the existence criteria for solutions of Liouville–Caputo-type generalized fractional differential equations and inclusions equipped with nonlocal generalized fractional integral and multipoint boundary conditions. Modern techniques of functional analysis are employed to derive the main results. Examples illustrating the main results are also presented. It is imperative to mention that our results correspond to the ones for a symmetric second-order nonlocal multipoint integral boundary value problem under suitable conditions (see the last section).


Author(s):  
Najma Ahmed ◽  
Dumitru Vieru ◽  
Fiazud Din Zaman

A generalized mathematical model of the breast and ovarian cancer is developed by considering the fractional differential equations with Caputo time-fractional derivatives. The use of the fractional model shows that the time-evolution of the proliferating cell mass, the quiescent cell mass, and the proliferative function are significantly influenced by their history. Even if the classical model, based on the derivative of integer order has been studied in many papers, its analytical solutions are presented in order to make the comparison between the classical model and the fractional model. Using the finite difference method, numerical schemes to the Caputo derivative operator and Riemann-Liouville fractional integral operator are obtained. Numerical solutions to the fractional differential equations of the generalized mathematical model are determined for the chemotherapy scheme based on the function of "on-off" type. Numerical results, obtained with the Mathcad software, are discussed and presented in graphical illustrations. The presence of the fractional order of the time-derivative as a parameter of solutions gives important information regarding the proliferative function, therefore, could give the possible rules for more efficient chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document