A Universal Predictor-corrector Algorithm for Numerical Simulation of Generalized Fractional Differential Equations

Author(s):  
Zaid Odibat

Abstract This study introduces some remarks on generalized fractional integral and differential operators, that generalize some familiar fractional integral and derivative operators, with respect to a given function. We briefly explain how to formulate representations of generalized fractional operators. Then, mainly, we propose a predictor-corrector algorithm for the numerical simulation of initial value problems involving generalized Caputo-type fractional derivatives with respect to another function. Numerical solutions of some generalized Caputo-type fractional derivative models have been introduced to demonstrate the applicability and efficiency of the presented algorithm. The proposed algorithm is expected to be widely used and utilized in the field of simulating fractional-order models.

Author(s):  
Hua Kong ◽  
Guo-Cheng Wu ◽  
Hui Fu ◽  
Kai-Teng Wu

Abstract A new class of fractional differential equations with exponential memory was recently defined in the space A C δ n [ a , b ] $A{C}_{\delta }^{n}\left[a,b\right]$ . In order to use the famous predictor–corrector method, a new quasi-linear interpolation with a non-equidistant partition is suggested in this study. New Euler and Adams–Moulton methods are proposed for the fractional integral equation. Error estimates of the generalized fractional integral and numerical solutions are provided. The predictor–corrector method for the new fractional differential equation is developed and numerical solutions of fractional nonlinear relaxation equation are given. It can be concluded that the non-equidistant partition is needed for non-standard fractional differential equations.


Author(s):  
Carl F. Lorenzo ◽  
Tom T. Hartley

It has been known that the initialization of fractional operators requires time-varying functions, a complicating factor. This paper simplifies the process of initialization of fractional differential equations by deriving Laplace transforms for the initialized fractional integral and derivative that generalize those for the integer-order operators. The new transforms unify the initialization of systems of fractional and ordinary differential equations. The paper provides background on past work in the area and determines the Laplace transforms for the initialized fractional integral and fractional derivatives of any (real) order. An application provides insight and demonstrates the theory.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


2021 ◽  
Vol 5 (1) ◽  
pp. 279-287
Author(s):  
Zeinab Toghani ◽  
◽  
Luis Gaggero-Sager ◽  

There are many possible definitions of derivatives, here we present some and present one that we have called generalized that allows us to put some of the others as a particular case of this but, what interests us is to determine that there is an infinite number of possible definitions of fractional derivatives, all are correct as differential operators each of them must be properly defined its algebra. We introduce a generalized version of fractional derivative that extends the existing ones in the literature. To those extensions it is associated a differentiable operator and a differential ring and applications that shows the advantages of the generalization. We also review the different definitions of fractional derivatives and it is shown how the generalized version contains the previous ones as a particular cases.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1093
Author(s):  
Daniel Cao Labora

One major question in Fractional Calculus is to better understand the role of the initial values in fractional differential equations. In this sense, there is no consensus about what is the reasonable fractional abstraction of the idea of “initial value problem”. This work provides an answer to this question. The techniques that are used involve known results concerning Volterra integral equations, and the spaces of summable fractional differentiability introduced by Samko et al. In a few words, we study the natural consequences in fractional differential equations of the already existing results involving existence and uniqueness for their integral analogues, in terms of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely extended opinion. We compute explicitly the amount of necessary initial values and the orders of differentiability where these conditions need to be imposed.


2020 ◽  
Vol 23 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Latif A-M. Hanna ◽  
Maryam Al-Kandari ◽  
Yuri Luchko

AbstractIn this paper, we first provide a survey of some basic properties of the left-and right-hand sided Erdélyi-Kober fractional integrals and derivatives and introduce their compositions in form of the composed Erdélyi-Kober operators. Then we derive a convolutional representation for the composed Erdélyi-Kober fractional integral in terms of its convolution in the Dimovski sense. For this convolution, we also determine the divisors of zero. These both results are then used for construction of an operational method for solving an initial value problem for a fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives defined on the positive semi-axis. Its solution is obtained in terms of the four-parameters Wright function of the second kind. The same operational method can be employed for other fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Jia Xin ◽  
Jianfei Huang ◽  
Weijia Zhao ◽  
Jiang Zhu

A spectral deferred correction method is presented for the initial value problems of fractional differential equations (FDEs) with Caputo derivative. This method is constructed based on the residual function and the error equation deduced from Volterra integral equations equivalent to the FDEs. The proposed method allows that one can use a relatively few nodes to obtain the high accuracy numerical solutions of FDEs without the penalty of a huge computational cost due to the nonlocality of Caputo derivative. Finally, preliminary numerical experiments are given to verify the efficiency and accuracy of this method.


Sign in / Sign up

Export Citation Format

Share Document