The power of locality: Exploring the limits of randomness in distributed computing

2020 ◽  
Vol 62 (5-6) ◽  
pp. 271-278
Author(s):  
Yannic Maus

AbstractMany modern systems are built on top of large-scale networks like the Internet. This article provides an overview of a dissertation [29] that addresses the complexity of classic graph problems like the vertex coloring problem in such networks. It has been known for a long time that randomization helps significantly in solving many of these problems, whereas the best known deterministic algorithms have been exponentially slower. In the first part of the dissertation we use a complexity theoretic approach to show that several problems are complete in the following sense: An efficient deterministic algorithm for any complete problem would imply an efficient algorithm for all problems that can be solved efficiently with a randomized algorithm. Among the complete problems is a rudimentary looking graph coloring problem that can be solved by a randomized algorithm without any communication. In further parts of the dissertation we develop efficient distributed algorithms for several problems where the most important problems are distributed versions of integer linear programs, the vertex coloring problem and the edge coloring problem. We also prove a lower bound on the runtime of any deterministic algorithm that solves the vertex coloring problem in a weak variant of the standard model of the area.

2006 ◽  
Vol 51 (20) ◽  
pp. 2541-2549 ◽  
Author(s):  
Jin Xu ◽  
Xiaoli Qiang ◽  
Fang Gang ◽  
Kang Zhou

2021 ◽  
pp. 1-11
Author(s):  
Zhaocai Wang ◽  
Dangwei Wang ◽  
Xiaoguang Bao ◽  
Tunhua Wu

The vertex coloring problem is a well-known combinatorial problem that requires each vertex to be assigned a corresponding color so that the colors on adjacent vertices are different, and the total number of colors used is minimized. It is a famous NP-hard problem in graph theory. As of now, there is no effective algorithm to solve it. As a kind of intelligent computing algorithm, DNA computing has the advantages of high parallelism and high storage density, so it is widely used in solving classical combinatorial optimization problems. In this paper, we propose a new DNA algorithm that uses DNA molecular operations to solve the vertex coloring problem. For a simple n-vertex graph and k different kinds of color, we appropriately use DNA strands to indicate edges and vertices. Through basic biochemical reaction operations, the solution to the problem is obtained in the O (kn2) time complexity. Our proposed DNA algorithm is a new attempt and application for solving Nondeterministic Polynomial (NP) problem, and it provides clear evidence for the ability of DNA calculations to perform such difficult computational problems in the future.


Author(s):  
Bruno Dias ◽  
Rosiane de Freitas ◽  
Nelson Maculan ◽  
Javier Marenco

2021 ◽  
Vol 1 (1) ◽  
pp. 59-77
Author(s):  
Russell Lee ◽  
Jessica Maghakian ◽  
Mohammad Hajiesmaili ◽  
Jian Li ◽  
Ramesh Sitaraman ◽  
...  

This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform worst-case optimized algorithms and fully data-driven algorithms.


Engineering ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 61-77 ◽  
Author(s):  
Jin Xu ◽  
Xiaoli Qiang ◽  
Kai Zhang ◽  
Cheng Zhang ◽  
Jing Yang

Sign in / Sign up

Export Citation Format

Share Document