Tetrahedral Intermediate

2016 ◽  
Author(s):  
V. Gold
Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2217 ◽  
Author(s):  
Ryota Kirikoshi ◽  
Noriyoshi Manabe ◽  
Ohgi Takahashi

Spontaneous deamidation in the Asn-Gly-Arg (NGR) motif that yields an isoAsp-Gly-Arg (isoDGR) sequence has recently attracted considerable attention because of the possibility of application to dual tumor targeting. It is well known that Asn deamidation reactions in peptide chains occur via the five-membered ring succinimide intermediate. Recently, we computationally showed by the B3LYP density functional theory method, that inorganic phosphate and the Arg side chain can catalyze the NGR deamidation using a cyclic peptide, c[CH2CO–NGRC]–NH2. In this previous study, the tetrahedral intermediate of the succinimide formation was assumed to be readily protonated at the nitrogen originating from the Asn side chain by the solvent water before the release of an NH3 molecule. In the present study, we found a new mechanism for the decomposition of the tetrahedral intermediate that does not require the protonation by an external proton source. The computational method is the same as in the previous study. In the new mechanism, the release of an NH3 molecule occurs after a proton exchange between the peptide and the phosphate and conformational changes. The rate-determining step of the overall reaction course is the previously reported first step, i.e., the cyclization to form the tetrahedral intermediate.


2004 ◽  
Vol 69 (12) ◽  
pp. 2174-2182 ◽  
Author(s):  
Hyuck Keun Oh ◽  
Ji Young Oh ◽  
Dae Dong Sung ◽  
Ikchoon Lee

The aminolysis of S-aryl O-ethyl dithiocarbonates with benzylamines are studied in acetonitrile at -25.0 °C. The βX (βnuc) values are in the range 0.67-0.77 with a negative cross-interaction constant, ρXZ = -0.24, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles (XC6H4CH2ND2) are large, kH/kD = 1.41-1.97, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the EtO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.


Sign in / Sign up

Export Citation Format

Share Document