Ferroelectric/Antiferroelectric Transition M B Bever (Ed.), Encyclopedia of Materials Science and Engineering, Pergamon Press, Oxford, 1986. C N R Rao and K J Rao, Phase Transitions in Solids, McGraw Hill Inc., New York, 1978. A R West, Solid-State Chemistry and its Applications, John Wiley and Sons, Chichester, 1984. R E Newnham, Structure-Property Relations, Springer-Verlag, Berlin, 1975.

2016 ◽  
Author(s):  
J. B. Clark ◽  
J. W. Hastie ◽  
L. H. E. Kihlborg ◽  
R. Metselaar ◽  
M. M. Thackeray
MRS Bulletin ◽  
1990 ◽  
Vol 15 (8) ◽  
pp. 35-36 ◽  
Author(s):  
Merton C. Flemings ◽  
Klavs F. Jensen ◽  
Andreas Mortensen

In the early 1950s when “materials science” was beginning to take shape in the minds of educators in materials departments, discussions were heated on the subject of how (and whether) intellectually rich courses could be developed with such broad coverage. It was argued by many that materials are too complex and vary too greatly from one another in their properties and in their applications to be treated in a single course. These individuals argued that if “materials” was to be taught, then it would have to be in courses or segments of courses broken down by materials classes-metals, ceramic, polymers, semiconductors.A full generation of faculty has passed through our ranks since those days, and the arguments regarding teaching of at least the beginning materials science subjects are now muted and perhaps moot. Few materials departments begin today with a materials-specific subject (e.g., metallurgy, ceramics) for either their own students or as a service subject for other engineering departments. Most begin with a subject in materials science or materials science and engineering that deals generically with all materials for at least a major portion of the subject. Examples are drawn from individual materials classes, and emphasis may shift to individual materials classes as the subject progresses.The key to development of these subjects, and the intellectual foundation on which they rest, is structure and structure-property relations. We can understand, and teach, how the building blocks of materials (atoms, molecules, grains, amorphous phases, etc.) fit together to build macroscopic structures.


Sign in / Sign up

Export Citation Format

Share Document