scholarly journals Nurse Scheduling with Opposition-Based Parallel Harmony Search Algorithm

2019 ◽  
Vol 28 (4) ◽  
pp. 633-647 ◽  
Author(s):  
Ece Cetin Yagmur ◽  
Ahmet Sarucan

Abstract One of the advances made in the management of human resources for the effective implementation of service delivery is the creation of personnel schedules. In this context, especially in terms of the majority of health-care systems, creating nurse schedules comes to the fore. Nurse scheduling problem (NSP) is a complex optimization problem that allows for the preparation of an appropriate schedule for nurses and, in doing so, considers the system constraints such as legal regulations, nurses’ preferences, and hospital policies and requirements. There are many studies in the literature that use exact solution algorithms, heuristics, and meta-heuristics approaches. Especially in large-scale problems, for which deterministic methods may require too much time and cost to reach a solution, heuristics and meta-heuristic approaches come to the fore instead of exact methods. In the first phase of the study, harmony search algorithm (HSA), which has shown progress recently and can be adapted to many problems is applied for a dataset in the literature, and the algorithm’s performance is evaluated by comparing the results with other heuristics which is applied to the same dataset. As a result of the evaluation, the performance of the classical HSA is inadequate when compared to other heuristics. In the second phase of our study, by considering new approaches proposed by the literature for HSA, the effects on the algorithm’s performance of these approaches are investigated and we tried to improve the performance of the algorithm. With the results, it has been determined that the improved algorithm, which is called opposition-based parallel HSA, can be used effectively for NSPs.

2011 ◽  
Vol 26 (3) ◽  
pp. 1080-1088 ◽  
Author(s):  
Rayapudi Srinivasa Rao ◽  
Sadhu Venkata Lakshmi Narasimham ◽  
Manyala Ramalinga Raju ◽  
A. Srinivasa Rao

2015 ◽  
Vol 24 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Asaju La’aro Bolaji ◽  
Ahamad Tajudin Khader ◽  
Mohammed Azmi Al-Betar ◽  
Mohammed A. Awadallah

AbstractThis article presents a Hybrid Artificial Bee Colony (HABC) for uncapacitated examination timetabling. The ABC algorithm is a recent metaheuristic population-based algorithm that belongs to the Swarm Intelligence technique. Examination timetabling is a hard combinatorial optimization problem of assigning examinations to timeslots based on the given hard and soft constraints. The proposed hybridization comes in two phases: the first phase hybridized a simple local search technique as a local refinement process within the employed bee operator of the original ABC, while the second phase involves the replacement of the scout bee operator with the random consideration concept of harmony search algorithm. The former is to empower the exploitation capability of ABC, whereas the latter is used to control the diversity of the solution search space. The HABC is evaluated using a benchmark dataset defined by Carter, including 12 problem instances. The results show that the HABC is better than exiting ABC techniques and competes well with other techniques from the literature.


2015 ◽  
Vol 42 (12) ◽  
pp. 5337-5355 ◽  
Author(s):  
Xiangyong Kong ◽  
Liqun Gao ◽  
Haibin Ouyang ◽  
Steven Li

Author(s):  
Behzad Karimi ◽  
Seyed Taghi Akhavan Niaki ◽  
Seyyed Masih Miriha ◽  
Mahsa Ghare Hasanluo ◽  
Shima Javanmard

A nonlinear integer programming model is developed in this article to solve redundancy allocation problems with multiple components having different failure rates in the series–parallel configuration using an active strategy. The main objective of this research is to select the number and the type of each component in subsystems so as the reliability of the system under certain constraints is maximized. To this aim, a weighted K-means clustering method is proposed, in which the analytical network process is employed to assign weights to the components of each cluster. As the proposed model belongs to the class of nondeterministic polynomial-time hardness problems, precise solution methods cannot solve it in large scale. Therefore, an invasive weed optimization algorithm, due to its proven high efficiency, is utilized to solve the problem. As there is no benchmark available in the literature, a harmony search algorithm and a genetic algorithm are employed as well to validate the results obtained. In order to find better solutions, response surface methodology is used to tune the parameters of the solution algorithms. Some numerical illustrations are solved in the end to not only show the application of the proposed methodology but also to validate the solution obtained and to compare the performance of the three solution algorithms. Experimental results are generally in favor of the invasive weed optimization.


Author(s):  
Khai Phuc Nguyen ◽  
Goro Fujita ◽  
Vo Ngoc Dieu

Abstract This paper presents an application of Cuckoo search algorithm to determine optimal location and sizing of Static VAR Compensator. Cuckoo search algorithm is a modern heuristic technique basing Cuckoo species’ parasitic strategy. The Lévy flight has been employed to generate random Cuckoo eggs. Moreover, the objective function is a multiobjective problem, which minimizes loss power, voltage deviation and investment cost of Static VAR Compensator while satisfying other operating constraints in power system. Cuckoo search algorithm is evaluated on three case studies and compared with the Teaching-learning-based optimization, Particle Swarm optimization and Improved Harmony search algorithm. The results show that Cuckoo search algorithm is better than other optimization techniques and its performance is also better.


Floorplanning plays an important role within the physical design method of very large Scale Integrated (VLSI) chips. It’s a necessary design step to estimate the chip area before the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, several improvement techniques were adopted to find optimal solution. In this paper, a hybrid algorithm which is genetic algorithm combined with music-inspired Harmony Search (HS) algorithm is employed for the fixed die outline constrained floorplanning, with the ultimate aim of reducing the full chip area. Initially, B*-tree is employed to come up with the first floorplan for the given rectangular hard modules and so Harmony Search algorithm is applied in any stages in genetic algorithm to get an optimum solution for the economical floorplan. The experimental results of the HGA algorithm are obtained for the MCNC benchmark circuits


Sign in / Sign up

Export Citation Format

Share Document