scholarly journals Machine Translation in Indian Languages: Challenges and Resolution

2019 ◽  
Vol 28 (3) ◽  
pp. 437-445 ◽  
Author(s):  
Raj Nath Patel ◽  
Prakash B. Pimpale ◽  
M. Sasikumar

Abstract English to Indian language machine translation poses the challenge of structural and morphological divergence. This paper describes English to Indian language statistical machine translation using preordering and suffix separation. The preordering uses rules to transfer the structure of the source sentences prior to training and translation. This syntactic restructuring helps statistical machine translation to tackle the structural divergence and hence provides better translation quality. The suffix separation is used to tackle the morphological divergence between English and highly agglutinative Indian languages. We demonstrate that the use of preordering and suffix separation helps in improving the quality of English to Indian language machine translation.

Author(s):  
K. Jaya ◽  
Deepa Gupta

Even though lot of Statistical Machine Translation(SMT) research work is happening for English-Hindi language pair, there is no effort done to standardize the dataset. Each of the research work uses different dataset, different parameters and different number of sentences during various phases of translation resulting in varied translation output. So comparing  these models, understand the result of these models, to get insight into corpus behavior for these models, regenerating the result of these research work  becomes tedious. This necessitates the need for standardization of dataset and to identify the common parameter for the development of model.  The main contribution of this paper is to discuss an approach to standardize the dataset and to identify the best parameter which in combination gives best performance. It also investigates a novel corpus augmentation approach to improve the translation quality of English-Hindi bidirectional statistical machine translation system. This model works well for the scarce resource without incorporating the external parallel data corpus of the underlying language.  This experiment is carried out using Open Source phrase-based toolkit Moses. Indian Languages Corpora Initiative (ILCI) Hindi-English tourism corpus is used.  With limited dataset, considerable improvement is achieved using the corpus augmentation approach for the English-Hindi bidirectional SMT system.


Author(s):  
K. Jaya ◽  
Deepa Gupta

Even though lot of Statistical Machine Translation(SMT) research work is happening for English-Hindi language pair, there is no effort done to standardize the dataset. Each of the research work uses different dataset, different parameters and different number of sentences during various phases of translation resulting in varied translation output. So comparing  these models, understand the result of these models, to get insight into corpus behavior for these models, regenerating the result of these research work  becomes tedious. This necessitates the need for standardization of dataset and to identify the common parameter for the development of model.  The main contribution of this paper is to discuss an approach to standardize the dataset and to identify the best parameter which in combination gives best performance. It also investigates a novel corpus augmentation approach to improve the translation quality of English-Hindi bidirectional statistical machine translation system. This model works well for the scarce resource without incorporating the external parallel data corpus of the underlying language.  This experiment is carried out using Open Source phrase-based toolkit Moses. Indian Languages Corpora Initiative (ILCI) Hindi-English tourism corpus is used.  With limited dataset, considerable improvement is achieved using the corpus augmentation approach for the English-Hindi bidirectional SMT system.


2021 ◽  
Vol 11 (7) ◽  
pp. 2948
Author(s):  
Lucia Benkova ◽  
Dasa Munkova ◽  
Ľubomír Benko ◽  
Michal Munk

This study is focused on the comparison of phrase-based statistical machine translation (SMT) systems and neural machine translation (NMT) systems using automatic metrics for translation quality evaluation for the language pair of English and Slovak. As the statistical approach is the predecessor of neural machine translation, it was assumed that the neural network approach would generate results with a better quality. An experiment was performed using residuals to compare the scores of automatic metrics of the accuracy (BLEU_n) of the statistical machine translation with those of the neural machine translation. The results showed that the assumption of better neural machine translation quality regardless of the system used was confirmed. There were statistically significant differences between the SMT and NMT in favor of the NMT based on all BLEU_n scores. The neural machine translation achieved a better quality of translation of journalistic texts from English into Slovak, regardless of if it was a system trained on general texts, such as Google Translate, or specific ones, such as the European Commission’s (EC’s) tool, which was trained on a specific-domain.


2021 ◽  
Vol 284 ◽  
pp. 08001
Author(s):  
Ilya Ulitkin ◽  
Irina Filippova ◽  
Natalia Ivanova ◽  
Alexey Poroykov

We report on various approaches to automatic evaluation of machine translation quality and describe three widely used methods. These methods, i.e. methods based on string matching and n-gram models, make it possible to compare the quality of machine translation to reference translation. We employ modern metrics for automatic evaluation of machine translation quality such as BLEU, F-measure, and TER to compare translations made by Google and PROMT neural machine translation systems with translations obtained 5 years ago, when statistical machine translation and rule-based machine translation algorithms were employed by Google and PROMT, respectively, as the main translation algorithms [6]. The evaluation of the translation quality of candidate texts generated by Google and PROMT with reference translation using an automatic translation evaluation program reveal significant qualitative changes as compared with the results obtained 5 years ago, which indicate a dramatic improvement in the work of the above-mentioned online translation systems. Ways to improve the quality of machine translation are discussed. It is shown that modern systems of automatic evaluation of translation quality allow errors made by machine translation systems to be identified and systematized, which will enable the improvement of the quality of translation by these systems in the future.


2019 ◽  
Vol 28 (3) ◽  
pp. 465-477 ◽  
Author(s):  
Amarnath Pathak ◽  
Partha Pakray

Abstract Machine Translation bridges communication barriers and eases interaction among people having different linguistic backgrounds. Machine Translation mechanisms exploit a range of techniques and linguistic resources for translation prediction. Neural machine translation (NMT), in particular, seeks optimality in translation through training of neural network, using a parallel corpus having a considerable number of instances in the form of a parallel running source and target sentences. Easy availability of parallel corpora for major Indian language forms and the ability of NMT systems to better analyze context and produce fluent translation make NMT a prominent choice for the translation of Indian languages. We have trained, tested, and analyzed NMT systems for English to Tamil, English to Hindi, and English to Punjabi translations. Predicted translations have been evaluated using Bilingual Evaluation Understudy and by human evaluators to assess the quality of translation in terms of its adequacy, fluency, and correspondence with human-predicted translation.


2015 ◽  
Vol 54 ◽  
pp. 159-192
Author(s):  
Lluís Formiga ◽  
Alberto Barrón-Cedeño ◽  
Lluís Màrquez ◽  
Carlos A. Henríquez ◽  
José B. Mariño

In this article we present a three-step methodology for dynamically improving a statistical machine translation (SMT) system by incorporating human feedback in the form of free edits on the system translations. We target at feedback provided by casual users, which is typically error-prone. Thus, we first propose a filtering step to automatically identify the better user-edited translations and discard the useless ones. A second step produces a pivot-based alignment between source and user-edited sentences, focusing on the errors made by the system. Finally, a third step produces a new translation model and combines it linearly with the one from the original system. We perform a thorough evaluation on a real-world dataset collected from the Reverso.net translation service and show that every step in our methodology contributes significantly to improve a general purpose SMT system. Interestingly, the quality improvement is not only due to the increase of lexical coverage, but to a better lexical selection, reordering, and morphology. Finally, we show the robustness of the methodology by applying it to a different scenario, in which the new examples come from an automatically Web-crawled parallel corpus. Using exactly the same architecture and models provides again a significant improvement of the translation quality of a general purpose baseline SMT system.


2011 ◽  
Vol 95 (1) ◽  
pp. 87-106 ◽  
Author(s):  
Bushra Jawaid ◽  
Daniel Zeman

Word-Order Issues in English-to-Urdu Statistical Machine Translation We investigate phrase-based statistical machine translation between English and Urdu, two Indo-European languages that differ significantly in their word-order preferences. Reordering of words and phrases is thus a necessary part of the translation process. While local reordering is modeled nicely by phrase-based systems, long-distance reordering is known to be a hard problem. We perform experiments using the Moses SMT system and discuss reordering models available in Moses. We then present our novel, Urdu-aware, yet generalizable approach based on reordering phrases in syntactic parse tree of the source English sentence. Our technique significantly improves quality of English-Urdu translation with Moses, both in terms of BLEU score and of subjective human judgments.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


2018 ◽  
Vol 8 (6) ◽  
pp. 3512-3514
Author(s):  
D. Chopra ◽  
N. Joshi ◽  
I. Mathur

Machine translation (MT) has been a topic of great research during the last sixty years, but, improving its quality is still considered an open problem. In the current paper, we will discuss improvements in MT quality by the use of the ensemble approach. We performed MT from English to Hindi using 6 MT different engines described in this paper. We found that the quality of MT is improved by using a combination of various approaches as compared to the simple baseline approach for performing MT from source to target text.


Author(s):  
Yang Zhao ◽  
Jiajun Zhang ◽  
Yu Zhou ◽  
Chengqing Zong

Knowledge graphs (KGs) store much structured information on various entities, many of which are not covered by the parallel sentence pairs of neural machine translation (NMT). To improve the translation quality of these entities, in this paper we propose a novel KGs enhanced NMT method. Specifically, we first induce the new translation results of these entities by transforming the source and target KGs into a unified semantic space. We then generate adequate pseudo parallel sentence pairs that contain these induced entity pairs. Finally, NMT model is jointly trained by the original and pseudo sentence pairs. The extensive experiments on Chinese-to-English and Englishto-Japanese translation tasks demonstrate that our method significantly outperforms the strong baseline models in translation quality, especially in handling the induced entities.


Sign in / Sign up

Export Citation Format

Share Document