scholarly journals Automatic evaluation of the quality of machine translation of a scientific text: the results of a five-year-long experiment

2021 ◽  
Vol 284 ◽  
pp. 08001
Author(s):  
Ilya Ulitkin ◽  
Irina Filippova ◽  
Natalia Ivanova ◽  
Alexey Poroykov

We report on various approaches to automatic evaluation of machine translation quality and describe three widely used methods. These methods, i.e. methods based on string matching and n-gram models, make it possible to compare the quality of machine translation to reference translation. We employ modern metrics for automatic evaluation of machine translation quality such as BLEU, F-measure, and TER to compare translations made by Google and PROMT neural machine translation systems with translations obtained 5 years ago, when statistical machine translation and rule-based machine translation algorithms were employed by Google and PROMT, respectively, as the main translation algorithms [6]. The evaluation of the translation quality of candidate texts generated by Google and PROMT with reference translation using an automatic translation evaluation program reveal significant qualitative changes as compared with the results obtained 5 years ago, which indicate a dramatic improvement in the work of the above-mentioned online translation systems. Ways to improve the quality of machine translation are discussed. It is shown that modern systems of automatic evaluation of translation quality allow errors made by machine translation systems to be identified and systematized, which will enable the improvement of the quality of translation by these systems in the future.

2021 ◽  
Vol 11 (7) ◽  
pp. 2948
Author(s):  
Lucia Benkova ◽  
Dasa Munkova ◽  
Ľubomír Benko ◽  
Michal Munk

This study is focused on the comparison of phrase-based statistical machine translation (SMT) systems and neural machine translation (NMT) systems using automatic metrics for translation quality evaluation for the language pair of English and Slovak. As the statistical approach is the predecessor of neural machine translation, it was assumed that the neural network approach would generate results with a better quality. An experiment was performed using residuals to compare the scores of automatic metrics of the accuracy (BLEU_n) of the statistical machine translation with those of the neural machine translation. The results showed that the assumption of better neural machine translation quality regardless of the system used was confirmed. There were statistically significant differences between the SMT and NMT in favor of the NMT based on all BLEU_n scores. The neural machine translation achieved a better quality of translation of journalistic texts from English into Slovak, regardless of if it was a system trained on general texts, such as Google Translate, or specific ones, such as the European Commission’s (EC’s) tool, which was trained on a specific-domain.


Author(s):  
Zakaria El Maazouzi ◽  
Badr Eddine EL Mohajir ◽  
Mohammed Al Achhab

Achieving high accuracy in automatic translation tasks has been one of the challenging goals for researchers in the area of machine translation since decades. Thus, the eagerness of exploring new possible ways to improve machine translation was always the matter for researchers in the field. Automatic translation as a key application in the natural language processing domain has developed many approaches, namely statistical machine translation and recently neural machine translation that improved largely the translation quality especially for Latin languages. They have even made it possible for the translation of some language pairs to approach human translation quality. In this paper, we present a survey of the state of the art of statistical translation, where we describe the different existing methodologies, and we overview the recent research studies while pointing out the main strengths and limitations of the different approaches.  


Author(s):  
Yana Fedorko ◽  
Tetiana Yablonskaya

The article is focused on peculiarities of English and Chinese political discourse translation into Ukrainian. The advantages and disadvantages of machine translation are described on the basis of linguistic analysis of online Google Translate and M-Translate systems. The reasons of errors in translation are identified and the need of post-correction to improve the quality of translation is wanted. Key words: political discourse, automatic translation, online machine translation systems, machine translation quality assessment.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


Author(s):  
Yang Zhao ◽  
Jiajun Zhang ◽  
Yu Zhou ◽  
Chengqing Zong

Knowledge graphs (KGs) store much structured information on various entities, many of which are not covered by the parallel sentence pairs of neural machine translation (NMT). To improve the translation quality of these entities, in this paper we propose a novel KGs enhanced NMT method. Specifically, we first induce the new translation results of these entities by transforming the source and target KGs into a unified semantic space. We then generate adequate pseudo parallel sentence pairs that contain these induced entity pairs. Finally, NMT model is jointly trained by the original and pseudo sentence pairs. The extensive experiments on Chinese-to-English and Englishto-Japanese translation tasks demonstrate that our method significantly outperforms the strong baseline models in translation quality, especially in handling the induced entities.


2019 ◽  
Vol 28 (3) ◽  
pp. 447-453 ◽  
Author(s):  
Sainik Kumar Mahata ◽  
Dipankar Das ◽  
Sivaji Bandyopadhyay

Abstract Machine translation (MT) is the automatic translation of the source language to its target language by a computer system. In the current paper, we propose an approach of using recurrent neural networks (RNNs) over traditional statistical MT (SMT). We compare the performance of the phrase table of SMT to the performance of the proposed RNN and in turn improve the quality of the MT output. This work has been done as a part of the shared task problem provided by the MTIL2017. We have constructed the traditional MT model using Moses toolkit and have additionally enriched the language model using external data sets. Thereafter, we have ranked the phrase tables using an RNN encoder-decoder module created originally as a part of the GroundHog project of LISA lab.


Author(s):  
A.V. Kozina ◽  
Yu.S. Belov

Automatically assessing the quality of machine translation is an important yet challenging task for machine translation research. Translation quality assessment is understood as predicting translation quality without reference to the source text. Translation quality depends on the specific machine translation system and often requires post-editing. Manual editing is a long and expensive process. Since the need to quickly determine the quality of translation increases, its automation is required. In this paper, we propose a quality assessment method based on ensemble supervised machine learning methods. The bilingual corpus WMT 2019 for the EnglishRussian language pair was used as data. The text data volume is 17089 sentences, 85% of the data was used for training, and 15% for testing the model. Linguistic functions extracted from the text in the source and target languages were used as features for training the system, since it is these characteristics that can most accurately characterize the translation in terms of quality. The following tools were used for feature extraction: a free language modeling tool based on SRILM and a Stanford POS Tagger parts of speech tagger. Before training the system, the text was preprocessed. The model was trained using three regression methods: Bagging, Extra Tree, and Random Forest. The algorithms were implemented in the Python programming language using the Scikit learn library. The parameters of the random forest method have been optimized using a grid search. The performance of the model was assessed by the mean absolute error MAE and the root mean square error RMSE, as well as by the Pearsоn coefficient, which determines the correlation with human judgment. Testing was carried out using three machine translation systems: Google and Bing neural systems, Mouses statistical machine translation systems based on phrases and based on syntax. Based on the results of the work, the method of additional trees showed itself best. In addition, for all categories of indicators under consideration, the best results are achieved using the Google machine translation system. The developed method showed good results close to human judgment. The system can be used for further research in the task of assessing the quality of translation.


2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


2018 ◽  
Vol 6 ◽  
pp. 145-157 ◽  
Author(s):  
Zaixiang Zheng ◽  
Hao Zhou ◽  
Shujian Huang ◽  
Lili Mou ◽  
Xinyu Dai ◽  
...  

Existing neural machine translation systems do not explicitly model what has been translated and what has not during the decoding phase. To address this problem, we propose a novel mechanism that separates the source information into two parts: translated Past contents and untranslated Future contents, which are modeled by two additional recurrent layers. The Past and Future contents are fed to both the attention model and the decoder states, which provides Neural Machine Translation (NMT) systems with the knowledge of translated and untranslated contents. Experimental results show that the proposed approach significantly improves the performance in Chinese-English, German-English, and English-German translation tasks. Specifically, the proposed model outperforms the conventional coverage model in terms of both the translation quality and the alignment error rate.


Sign in / Sign up

Export Citation Format

Share Document