scholarly journals Evaluation of English–Slovak Neural and Statistical Machine Translation

2021 ◽  
Vol 11 (7) ◽  
pp. 2948
Author(s):  
Lucia Benkova ◽  
Dasa Munkova ◽  
Ľubomír Benko ◽  
Michal Munk

This study is focused on the comparison of phrase-based statistical machine translation (SMT) systems and neural machine translation (NMT) systems using automatic metrics for translation quality evaluation for the language pair of English and Slovak. As the statistical approach is the predecessor of neural machine translation, it was assumed that the neural network approach would generate results with a better quality. An experiment was performed using residuals to compare the scores of automatic metrics of the accuracy (BLEU_n) of the statistical machine translation with those of the neural machine translation. The results showed that the assumption of better neural machine translation quality regardless of the system used was confirmed. There were statistically significant differences between the SMT and NMT in favor of the NMT based on all BLEU_n scores. The neural machine translation achieved a better quality of translation of journalistic texts from English into Slovak, regardless of if it was a system trained on general texts, such as Google Translate, or specific ones, such as the European Commission’s (EC’s) tool, which was trained on a specific-domain.

2021 ◽  
Vol 284 ◽  
pp. 08001
Author(s):  
Ilya Ulitkin ◽  
Irina Filippova ◽  
Natalia Ivanova ◽  
Alexey Poroykov

We report on various approaches to automatic evaluation of machine translation quality and describe three widely used methods. These methods, i.e. methods based on string matching and n-gram models, make it possible to compare the quality of machine translation to reference translation. We employ modern metrics for automatic evaluation of machine translation quality such as BLEU, F-measure, and TER to compare translations made by Google and PROMT neural machine translation systems with translations obtained 5 years ago, when statistical machine translation and rule-based machine translation algorithms were employed by Google and PROMT, respectively, as the main translation algorithms [6]. The evaluation of the translation quality of candidate texts generated by Google and PROMT with reference translation using an automatic translation evaluation program reveal significant qualitative changes as compared with the results obtained 5 years ago, which indicate a dramatic improvement in the work of the above-mentioned online translation systems. Ways to improve the quality of machine translation are discussed. It is shown that modern systems of automatic evaluation of translation quality allow errors made by machine translation systems to be identified and systematized, which will enable the improvement of the quality of translation by these systems in the future.


2021 ◽  
pp. 1-10
Author(s):  
Zhiqiang Yu ◽  
Yuxin Huang ◽  
Junjun Guo

It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions. Thai-Lao is a typical low-resource language pair of tiny parallel corpus, leading to suboptimal NMT performance on it. However, Thai and Lao have considerable similarities in linguistic morphology and have bilingual lexicon which is relatively easy to obtain. To use this feature, we first build a bilingual similarity lexicon composed of pairs of similar words. Then we propose a novel NMT architecture to leverage the similarity between Thai and Lao. Specifically, besides the prevailing sentence encoder, we introduce an extra similarity lexicon encoder into the conventional encoder-decoder architecture, by which the semantic information carried by the similarity lexicon can be represented. We further provide a simple mechanism in the decoder to balance the information representations delivered from the input sentence and the similarity lexicon. Our approach can fully exploit linguistic similarity carried by the similarity lexicon to improve translation quality. Experimental results demonstrate that our approach achieves significant improvements over the state-of-the-art Transformer baseline system and previous similar works.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


Author(s):  
Yang Zhao ◽  
Jiajun Zhang ◽  
Yu Zhou ◽  
Chengqing Zong

Knowledge graphs (KGs) store much structured information on various entities, many of which are not covered by the parallel sentence pairs of neural machine translation (NMT). To improve the translation quality of these entities, in this paper we propose a novel KGs enhanced NMT method. Specifically, we first induce the new translation results of these entities by transforming the source and target KGs into a unified semantic space. We then generate adequate pseudo parallel sentence pairs that contain these induced entity pairs. Finally, NMT model is jointly trained by the original and pseudo sentence pairs. The extensive experiments on Chinese-to-English and Englishto-Japanese translation tasks demonstrate that our method significantly outperforms the strong baseline models in translation quality, especially in handling the induced entities.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


2019 ◽  
Vol 9 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Benyamin Ahmadnia ◽  
Bonnie J. Dorr

AbstractThe quality of Neural Machine Translation (NMT), as a data-driven approach, massively depends on quantity, quality and relevance of the training dataset. Such approaches have achieved promising results for bilingually high-resource scenarios but are inadequate for low-resource conditions. Generally, the NMT systems learn from millions of words from bilingual training dataset. However, human labeling process is very costly and time consuming. In this paper, we describe a round-trip training approach to bilingual low-resource NMT that takes advantage of monolingual datasets to address training data bottleneck, thus augmenting translation quality. We conduct detailed experiments on English-Spanish as a high-resource language pair as well as Persian-Spanish as a low-resource language pair. Experimental results show that this competitive approach outperforms the baseline systems and improves translation quality.


Author(s):  
Tetiana Korolova ◽  
Natalya Zhmayeva ◽  
Yulia Kolchah

Modern industry of translation services singles out two translation quality levels that can be reached as a result of machine translation (MT) post-editing: good enough quality foresees rendering the main information of the source message, admitting stylistic, syntactic and morphological flaws while quality similar or equal to human translation is a full dress version of a post-edited text, ready to be published. The overview of MT systems enables us to consider Google Neural Machine Translation (GNMT) which is based on the most modern methods of training to reach maximum improvements the most powerful one. When analyzing texts translated by means of Google Translate the following problems were identified: distortion of the referential meaning of the source message, incorrect choice of variant equivalences, lack of terms harmonization, lack of abbreviations rendering, inconformity of linguistic units in persons, numbers and cases, incorrect choice of functional correspondings when rendering absolute constructions, gerund and participial constructions, literal translation of phrases, lack of transformations of the grammatical structure of the source message (additions, rearrangements). Taking into account the classified issues of machine translation as well as the levels of post-editing quality post-editing of the texts translated by means of MT is carried out, demands and recommendations applicable to post-editing results of MT within the language pair under analysis with respect to peculiarities of the specific MT system and the type of translated texts are provided.


2016 ◽  
Vol 6 (1) ◽  
pp. 30-45
Author(s):  
Pankaj K. Goswami ◽  
Sanjay K. Dwivedi ◽  
C. K. Jha

English to Hindi translation of the computer-science related e-content, generated through an online freely available machine translation engine may not be technically correct. The expected target translation should be as fluent as intended for the native learners and the meaning of a source e-content should be conveyed properly. A Multi-Engine Machine Translation for English to Hindi Language (MEMTEHiL) framework has been designed and integrated by the authors as a translation solution for the computer science domain e-content. It was possible by enabling the use of well-tested approaches of machine translation. The humanly evaluated and acceptable metrics like fluency and adequacy (F&A) were used to assess the best translation quality for English to Hindi language pair. Besides humanly-judged metrics, another well-tested and existing interactive version of Bi-Lingual Evaluation Understudy (iBLEU) was used for evaluation. Authors have incorporated both parameters (F&A and iBLEU) for assessing the quality of translation as regenerated by the designed MEMTEHiL.


Author(s):  
Rupjyoti Baruah ◽  
Rajesh Kumar Mundotiya ◽  
Anil Kumar Singh

Machine translation (MT) systems have been built using numerous different techniques for bridging the language barriers. These techniques are broadly categorized into approaches like Statistical Machine Translation (SMT) and Neural Machine Translation (NMT). End-to-end NMT systems significantly outperform SMT in translation quality on many language pairs, especially those with the adequate parallel corpus. We report comparative experiments on baseline MT systems for Assamese to other Indo-Aryan languages (in both translation directions) using the traditional Phrase-Based SMT as well as some more successful NMT architectures, namely basic sequence-to-sequence model with attention, Transformer, and finetuned Transformer. The results are evaluated using the most prominent and popular standard automatic metric BLEU (BiLingual Evaluation Understudy), as well as other well-known metrics for exploring the performance of different baseline MT systems, since this is the first such work involving Assamese. The evaluation scores are compared for SMT and NMT models for the effectiveness of bi-directional language pairs involving Assamese and other Indo-Aryan languages (Bangla, Gujarati, Hindi, Marathi, Odia, Sinhalese, and Urdu). The highest BLEU scores obtained are for Assamese to Sinhalese for SMT (35.63) and the Assamese to Bangla for NMT systems (seq2seq is 50.92, Transformer is 50.01, and finetuned Transformer is 50.19). We also try to relate the results with the language characteristics, distances, family trees, domains, data sizes, and sentence lengths. We find that the effect of the domain is the most important factor affecting the results for the given data domains and sizes. We compare our results with the only existing MT system for Assamese (Bing Translator) and also with pairs involving Hindi.


Author(s):  
Candy Lalrempuii ◽  
Badal Soni ◽  
Partha Pakray

Machine Translation is an effort to bridge language barriers and misinterpretations, making communication more convenient through the automatic translation of languages. The quality of translations produced by corpus-based approaches predominantly depends on the availability of a large parallel corpus. Although machine translation of many Indian languages has progressively gained attention, there is very limited research on machine translation and the challenges of using various machine translation techniques for a low-resource language such as Mizo. In this article, we have implemented and compared statistical-based approaches with modern neural-based approaches for the English–Mizo language pair. We have experimented with different tokenization methods, architectures, and configurations. The performance of translations predicted by the trained models has been evaluated using automatic and human evaluation measures. Furthermore, we have analyzed the prediction errors of the models and the quality of predictions based on variations in sentence length and compared the model performance with the existing baselines.


Sign in / Sign up

Export Citation Format

Share Document