scholarly journals Delegating a Product of Group Exponentiations with Application to Signature Schemes (Submission to Special NutMiC 2019 Issue of JMC)

2020 ◽  
Vol 14 (1) ◽  
pp. 438-459
Author(s):  
Giovanni Di Crescenzo ◽  
Matluba Khodjaeva ◽  
Delaram Kahrobaei ◽  
Vladimir Shpilrain

AbstractMany public-key cryptosystems and, more generally, cryptographic protocols, use group exponentiations as important primitive operations. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that a computationally weaker client (i.e., capable of performing a relatively small number of modular multiplications) delegates such primitive operations to a computationally stronger server. Important requirements for such delegation protocols include privacy of the client’s input exponent and security of the client’s output, in the sense of detecting, except for very small probability, any malicious server’s attempt to convince the client of an incorrect exponentiation result. Only recently, efficient protocols for the delegation of a fixed-based exponentiation, over cyclic and RSA-type groups with certain properties, have been presented and proved to satisfy both requirements.In this paper we show that a product of many fixed-base exponentiations, over a cyclic groups with certain properties, can be privately and securely delegated by keeping the client’s online number of modular multiplications only slightly larger than in the delegation of a single exponentiation. We use this result to show the first delegations of entire cryptographic schemes: the well-known digital signature schemes by El-Gamal, Schnorr and Okamoto, over the q-order subgroup in ℤp, for p, q primes, as well as their variants based on elliptic curves. Previous efficient delegation results were limited to the delegation of single algorithms within cryptographic schemes.

2011 ◽  
Vol 204-210 ◽  
pp. 1318-1321
Author(s):  
Xuan Wu Zhou ◽  
Yan Fu

Discrete logarithm problem is an important trapdoor function to design asymmetric cryptosystem, and some fast public key cryptosystems have been designed based on it. In the paper, we introduced fast asymmetric cryptosystem into the designing and analyzing of blind signature, and presented improved blind signature schemes based on ECC (Elliptic Curves Cryptosystem). The trapdoor function of the blind signatures is based on ECDLP (Elliptic Curves Discrete Logarithm Problem), and the algorithms of the scheme make full use of the superiority of ECC, such as high efficiency and short key length. The improved blind signature schemes can achieve the same security level with less storing space, smaller communication band-width and less overheads regarding software and hardware application. Furthermore, the algorithms in the schemes can be generalized into other public key cryptosystems based on discrete logarithm problem without any influence to efficiency or security.


2018 ◽  
pp. 563-588
Author(s):  
Krishna Asawa ◽  
Akanksha Bhardwaj

With the emergence of technological revolution to host services over Internet, secure communication over World Wide Web becomes critical. Cryptographic protocols are being in practice to secure the data transmission over network. Researchers use complex mathematical problem, number theory, prime numbers etc. to develop such cryptographic protocols. RSA and Diffie Hellman public key crypto systems have proven to be secure due to the difficulty of factoring the product of two large primes or computing discrete logarithms respectively. With the advent of quantum computers a new paradigm shift on public key cryptography may be on horizon. Since superposition of the qubits and entanglement behavior exhibited by quantum computers could hold the potential to render most modern encryption useless. The aim of this chapter is to analyze the implications of quantum computing power on current public key cryptosystems and to show how these cryptosystems can be restructured to sustain in the new computing paradigm.


Author(s):  
Krishna Asawa ◽  
Akanksha Bhardwaj

With the emergence of technological revolution to host services over Internet, secure communication over World Wide Web becomes critical. Cryptographic protocols are being in practice to secure the data transmission over network. Researchers use complex mathematical problem, number theory, prime numbers etc. to develop such cryptographic protocols. RSA and Diffie Hellman public key crypto systems have proven to be secure due to the difficulty of factoring the product of two large primes or computing discrete logarithms respectively. With the advent of quantum computers a new paradigm shift on public key cryptography may be on horizon. Since superposition of the qubits and entanglement behavior exhibited by quantum computers could hold the potential to render most modern encryption useless. The aim of this chapter is to analyze the implications of quantum computing power on current public key cryptosystems and to show how these cryptosystems can be restructured to sustain in the new computing paradigm.


2011 ◽  
Vol 204-210 ◽  
pp. 1062-1065 ◽  
Author(s):  
Yu Qiao Deng

Digital signature schemes allow a signer to transform any message into a signed message, such that anyone can verify the validity of the signed message using the signer’s public key, but only the signer can generate signed messages. A proxy re-signature, which is a type of digital signatures, has significant applications in many areas. Proxy signature scheme was first introduced by Blaze, Bleumer, and Strauss, but that scheme is inefficient and with limited features. After that, some Proxy re-signature schemes were proposed by researchers. This paper constructs a blind proxy re-signatures scheme. Comparing to the previous proxy re-signature schemes, the scheme adds a message blinded feature, and then the security of the scheme is proven.


Author(s):  
Andreas Bolfing

This chapter provides a very detailed introduction to cryptography. It first explains the cryptographic basics and introduces the concept of public-key encryption which is based on one-way and trapdoor functions, considering the three major public-key encryption families like integer factorization, discrete logarithm and elliptic curve schemes. This is followed by an introduction to hash functions which are applied to construct Merkle trees and digital signature schemes. As modern cryptoschemes are commonly based on elliptic curves, the chapter then introduces elliptic curve cryptography which is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP). It considers the hardness of the ECDLP and the possible attacks against it, showing how to find suitable domain parameters to construct cryptographically strong elliptic curves. This is followed by the discussion of elliptic curve domain parameters which are recommended by current standards. Finally, it introduces the Elliptic Curve Digital Signature Algorithm (ECDSA), the elliptic curve digital signature scheme.


2019 ◽  
Vol 62 (8) ◽  
pp. 1132-1147 ◽  
Author(s):  
Jiahui Chen ◽  
Jie Ling ◽  
Jianting Ning ◽  
Jintai Ding

Abstract In this paper, we proposed an idea to construct a general multivariate public key cryptographic (MPKC) scheme based on a user’s identity. In our construction, each user is distributed a unique identity by the key distribution center (KDC) and we use this key to generate user’s private keys. Thereafter, we use these private keys to produce the corresponding public key. This method can make key generating process easier so that the public key will reduce from dozens of Kilobyte to several bits. We then use our general scheme to construct practical identity-based signature schemes named ID-UOV and ID-Rainbow based on two well-known and promising MPKC signature schemes, respectively. Finally, we present the security analysis and give experiments for all of our proposed schemes and the baseline schemes. Comparison shows that our schemes are both efficient and practical.


2019 ◽  
Vol 30 (04) ◽  
pp. 619-633
Author(s):  
Burong Kang ◽  
Xinyu Meng ◽  
Lei Zhang ◽  
Yinxia Sun

Most of the existing cryptographic schemes, e.g., key agreement protocol, call for good randomness. Otherwise, the security of these cryptographic schemes cannot be fully guaranteed. Nonce-based cryptosystem is recently introduced to improve the security of public key encryption and digital signature schemes by ensuring security when randomness fails. In this paper, we first investigate the security of key agreement protocols when randomness fails. Then we define the security model for nonce-based key agreement protocols and propose a nonce-based key agreement protocol that protects against bad randomness. The new protocol is proven to be secure in our proposed security model.


Sign in / Sign up

Export Citation Format

Share Document