Blow-up numerical solutions for a convective reaction–diffusion equation

2015 ◽  
Vol 23 (2) ◽  
Author(s):  
Chia-Feng Chang ◽  
Yi-Chien Wu ◽  
Chien-Hong Cho

AbstractWe consider finite difference solutions of the 1-dimconvective reaction-diffusion equation u

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sachin Kumar ◽  
Jinde Cao ◽  
Xiaodi Li

In this research work, we focused on finding the numerical solution of time-fractional reaction-diffusion and another class of integro-differential equation known as the integro reaction-diffusion equation. For this, we developed a numerical scheme with the help of quasi-wavelets. The fractional term in the time direction is approximated by using the Crank–Nicolson scheme. The spatial term and the integral term present in integro reaction-diffusion are discretized and approximated with the help of quasi-wavelets. We study this model with Dirichlet boundary conditions. The discretization of these initial and boundary conditions is done with a different approach by the quasi-wavelet-based numerical method. The validity of this proposed method is tested by taking some numerical examples having an exact analytical solution. The accuracy of this method can be seen by error tables which we have drawn between the exact solution and the approximate solution. The effectiveness and validity can be seen by the graphs of the exact and numerical solutions. We conclude that this method has the desired accuracy and has a distinctive local property.


Sign in / Sign up

Export Citation Format

Share Document