A computational investigation of the optimal Halton sequence in QMC applications

2019 ◽  
Vol 25 (3) ◽  
pp. 187-207
Author(s):  
Manal Bayousef ◽  
Michael Mascagni

Abstract We propose the use of randomized (scrambled) quasirandom sequences for the purpose of providing practical error estimates for quasi-Monte Carlo (QMC) applications. One popular quasirandom sequence among practitioners is the Halton sequence. However, Halton subsequences have correlation problems in their highest dimensions, and so using this sequence for high-dimensional integrals dramatically affects the accuracy of QMC. Consequently, QMC studies have previously proposed several scrambling methods; however, to varying degrees, scrambled versions of Halton sequences still suffer from the correlation problem as manifested in two-dimensional projections. This paper proposes a modified Halton sequence (MHalton), created using a linear digital scrambling method, which finds the optimal multiplier for the Halton sequence in the linear scrambling space. In order to generate better uniformity of distributed sequences, we have chosen strong MHalton multipliers up to 360 dimensions. The proposed multipliers have been tested and proved to be stronger than several sets of multipliers used in other known scrambling methods. To compare the quality of our proposed scrambled MHalton sequences with others, we have performed several extensive computational tests that use {L_{2}} -discrepancy and high-dimensional integration tests. Moreover, we have tested MHalton sequences on Mortgage-backed security (MBS), which is one of the most widely used applications in finance. We have tested our proposed MHalton sequence numerically and empirically, and they show optimal results in QMC applications. These confirm the efficiency and safety of our proposed MHalton over scrambling sequences previously used in QMC applications.

2006 ◽  
Vol 16 (03) ◽  
pp. 285-311 ◽  
Author(s):  
HEINZ HOFBAUER ◽  
ANDREAS UHL ◽  
PETER ZINTERHOF

The splitting of Quasi-Monte Carlo (QMC) point sequences into interleaved substreams has been suggested to raise the speed of distributed numerical integration and to lower the traffic on the network. The usefulness of this approach in GRID environments is discussed. After specifying requirements for using QMC techniques in GRID environments in general we review and evaluate the proposals made in literature so far. In numerical integration experiments we investigate the quality of single leaped QMC point sequence substreams, comparing the respective properties of Sobol', Halton, Faure, Niederreiter-Xing, and Zinterhof sequences in detail. Numerical integration results obtained on a distributed system show that leaping sensitivity varies tremendously among the different sequences and we provide examples of deteriorated results caused by leaping effects, especially in heterogeneous settings which would be expected in GRID environments.


2014 ◽  
Vol 20 (3) ◽  
Author(s):  
Ilya M. Sobol ◽  
Boris V. Shukhman

Sign in / Sign up

Export Citation Format

Share Document