Second hankel determinat for certain analytic functions satisfying subordinate condition

2018 ◽  
Vol 68 (2) ◽  
pp. 463-471
Author(s):  
Erhan Deniz ◽  
Levent Budak

Abstract In this paper, we introduce and investigate the following subclass $$\begin{array}{} \displaystyle 1+\frac{1}{\gamma }\left( \frac{zf'(z)+\lambda z^{2}f''(z)}{\lambda zf'(z)+(1-\lambda )f(z)}-1\right) \prec \varphi (z)\qquad\left( 0\leq \lambda \leq 1,\gamma \in \mathbb{C} \smallsetminus \{0\}\right) \end{array} $$ of analytic functions, φ is an analytic function with positive real part in the unit disk 𝔻, satisfying φ (0) = 1, φ '(0) > 0, and φ (𝔻) is symmetric with respect to the real axis. We obtain the upper bound of the second Hankel determinant | a2a4− $\begin{array}{} a^2_3 \end{array} $ | for functions belonging to the this class is studied using Toeplitz determinants. The results, which are presented in this paper, would generalize those in related works of several earlier authors.

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 491
Author(s):  
Paweł Zaprawa ◽  
Anna Futa ◽  
Magdalena Jastrzębska

In this paper, we discuss two well-known coefficient functionals a 2 a 4 - a 3 2 and a 4 - a 2 a 3 . The first one is called the Hankel determinant of order 2. The second one is a special case of Zalcman functional. We consider them for functions in the class Q R ( 1 2 ) of analytic functions with real coefficients which satisfy the condition ( ) f ( z ) z > 1 2 for z in the unit disk Δ . It is known that all coefficients of f ∈ Q R ( 1 2 ) are bounded by 1. We find the upper bound of a 2 a 4 - a 3 2 and the bound of | a 4 - a 2 a 3 | . We also consider a few subclasses of Q R ( 1 2 ) and we estimate the above mentioned functionals. In our research two different methods are applied. The first method connects the coefficients of a function in a given class with coefficients of a corresponding Schwarz function or a function with positive real part. The second method is based on the theorem of formulated by Szapiel. According to this theorem, we can point out the extremal functions in this problem, that is, functions for which equalities in the estimates hold. The obtained estimates significantly extend the results previously established for the discussed classes. They allow to compare the behavior of the coefficient functionals considered in the case of real coefficients and arbitrary coefficients.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Jagannath Patel ◽  
Ashok Kumar Sahoo

The object of the present investigation is to solve Fekete-Szegö problem and determine the sharp upper bound to the second Hankel determinant for a new classℛ̃(a,c,ρ)of analytic functions in the unit disk. We also obtain a sufficient condition for an analytic function to be in this class.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 227-245 ◽  
Author(s):  
Najla Alarifi ◽  
Rosihan Ali ◽  
V. Ravichandran

Let f be a normalized analytic function in the open unit disk of the complex plane satisfying zf'(z)/f(z) is subordinate to a given analytic function ?. A sharp bound is obtained for the second Hankel determinant of the kth-root transform z[f(zk)/zk]1/k. Best bounds for the Hankel determinant are also derived for the kth-root transform of several other classes, which include the class of ?-convex functions and ?-logarithmically convex functions. These bounds are expressed in terms of the coefficients of the given function ?, and thus connect with earlier known results for particular choices of ?.


2014 ◽  
Vol 07 (02) ◽  
pp. 1350042
Author(s):  
D. Vamshee Krishna ◽  
T. Ramreddy

The objective of this paper is to obtain an upper bound to the second Hankel determinant [Formula: see text] for the functions belonging to strongly starlike and convex functions of order α(0 < α ≤ 1). Further, we introduce a subclass of analytic functions and obtain the same coefficient inequality for the functions in this class, using Toeplitz determinants.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jagannath Patel ◽  
Ashok Kumar Sahoo

The object of the present investigation is to solve the Fekete-Szegö problem and determine the sharp upper bound to the second Hankel determinant for a new class R(a,c) of analytic functions involving the Carlson-Shaffer operator in the unit disk. We also obtain a sufficient condition for normalized analytic functions in the unit disk to be in this class.


2018 ◽  
Vol 37 (4) ◽  
pp. 83-95
Author(s):  
Trailokya Panigrahi ◽  
Janusz Sokól

In this paper, a new subclass of analytic functions ML_{\lambda}^{*}  associated with the right half of the lemniscate of Bernoulli is introduced. The sharp upper bound for the Fekete-Szego functional |a_{3}-\mu a_{2}^{2}|  for both real and complex \mu are considered. Further, the sharp upper bound to the second Hankel determinant |H_{2}(1)| for the function f in the class ML_{\lambda}^{*} using Toeplitz determinant is studied. Relevances of the main results are also briefly indicated.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950017
Author(s):  
H. Orhan ◽  
N. Magesh ◽  
V. K. Balaji

In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass [Formula: see text] of analytic bi-univalent function class [Formula: see text] which is associated with Chebyshev polynomials in the open unit disk.


2019 ◽  
Vol 27 (2) ◽  
pp. 167-177
Author(s):  
Dorina Răducanu

AbstractIn this paper, we obtain the estimates for the second Hankel determinant for a class of analytic functions defined by q-derivative operator and subordinate to an analytic function.


2016 ◽  
Vol 24 (1) ◽  
pp. 353-369
Author(s):  
R. K. Raina ◽  
Poonam Sharma ◽  
G. S. Sălăgean

AbstractIn this paper, we consider a class L(λ, μ; ϕ) of analytic functions f defined in the open unit disk U satisfying the subordination condition that,where is the Sălăgean operator and ϕ(z) is a convex function with positive real part in U. We obtain some characteristic properties giving the coefficient inequality, radius and subordination results, and an inclusion result for the above class when the function ϕ(z) is a bilinear mapping in the open unit disk. For these functions f (z) ; sharp bounds for the initial coefficient and for the Fekete-Szegö functional are determined, and also some integral representations are given.


Sign in / Sign up

Export Citation Format

Share Document