Second hankel determinat for certain analytic functions satisfying subordinate condition
Abstract In this paper, we introduce and investigate the following subclass $$\begin{array}{} \displaystyle 1+\frac{1}{\gamma }\left( \frac{zf'(z)+\lambda z^{2}f''(z)}{\lambda zf'(z)+(1-\lambda )f(z)}-1\right) \prec \varphi (z)\qquad\left( 0\leq \lambda \leq 1,\gamma \in \mathbb{C} \smallsetminus \{0\}\right) \end{array} $$ of analytic functions, φ is an analytic function with positive real part in the unit disk 𝔻, satisfying φ (0) = 1, φ '(0) > 0, and φ (𝔻) is symmetric with respect to the real axis. We obtain the upper bound of the second Hankel determinant | a2a4− $\begin{array}{} a^2_3 \end{array} $ | for functions belonging to the this class is studied using Toeplitz determinants. The results, which are presented in this paper, would generalize those in related works of several earlier authors.