scholarly journals Influence Of Used Bacterial Culture On Zinc And Aluminium Bioleaching From Printed Circuit Boards

2015 ◽  
Vol 14 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Anna Mrazikova ◽  
Renata Marcincakova ◽  
Jana Kadukova ◽  
Oksana Velgosova ◽  
Magdalena Balintova

Abstract Bioleaching processes were used to solubilize metals (Cu, Ni, Zn and Al) from printed circuit boards (PCBs). In this study, a PCBs-adapted pure culture of Acidithiobacillus ferrooxidans, pure culture of Acidithiobacillus thiooxidans and PCBs-adapted mixed culture of A. ferrooxidans and A. thiooxidans were used for recovery of the metals. The study showed that the mixed bacterial culture has the greatest potential to dissolve metals. The maximum metal bioleaching efficiencies were found to be 100, 92, 89 and 20% of Cu, Ni, Zn and Al, respectively. The mixed culture revealed higher bacterial stability. The main factor responsible for high metal recovery was the ability of the mixed culture to maintain the low pH during the whole process. The pure culture of A. thiooxidans had no significant effect on metal bioleaching from PCBs.

2016 ◽  
Vol 61 (1) ◽  
pp. 261-264 ◽  
Author(s):  
A. Mrážiková ◽  
J. Kaduková ◽  
R. Marcinčáková ◽  
O. Velgosová ◽  
J. Willner ◽  
...  

The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs) using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36%) was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking.


2008 ◽  
Vol 128 (11) ◽  
pp. 657-662 ◽  
Author(s):  
Tsuyoshi Maeno ◽  
Yukihiko Sakurai ◽  
Takanori Unou ◽  
Kouji Ichikawa ◽  
Osamu Fujiwara

2018 ◽  
Vol 23 (2) ◽  
pp. 141-148
Author(s):  
S.Sh. Rekhviashvili ◽  
◽  
M.O. Mamchuev ◽  
V.V. Narozhnov ◽  
M.M. Oshkhunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document