high metal
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 89)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 792
Author(s):  
Christin Baumgärtel ◽  
Thea Lautenschläger ◽  
Mazekana H. G. Panzo ◽  
Francisco Afonso ◽  
Christoph Neinhuis ◽  
...  

High metal contents of acidic soils from sub-Saharan Africa often prevent the cultivation of crops and lead to a low livestock yield. The carbohydrate rich diet of the Angolan population is low in minerals and vitamins, resulting in various deficiency syndromes and a high child mortality rate. Eight traditionally utilized plants (Anisophyllea quangensis, Annona stenophylla subsp. cuneata, Canarium schweinfurthii, Eugenia malangensis, Landolphia lanceolata, Raphionacme madiensis, Tristemma mauritianum, Vitex madiensis subsp. madiensis) with nutritional value for the Angolan population were analyzed for their soil and growing conditions. The species are adapted to the local conditions and can serve as crops for the unfavorable soils of the province Uíge. Chemical and physical characteristics of the uppermost soil (0–5 cm) and in 30 cm depth were analyzed. The plant-available macro-and micronutrients were determined using Mehlich 3 extraction. Data are completed with leaf tissue analyses, examining the uptake of minerals. As aluminum (Al) and manganese (Mn) are plant-available in high amounts, local plants evolved mechanisms dealing with those metals. These Al accumulators with foliar contents above 1000 mg/kg are Anisophyllea quangensis (7884 mg/kg), Landolphia lanceolata (6809 mg/kg), Tristemma mauritianum (4674 mg/kg), and Eugenia malangensis (13,989 mg/kg). All four species bear edible fruits with nutritional potential. The domestication and commercialization of those plants seem to be promising, utilizing local soils without expensive amelioration techniques.


2022 ◽  
Author(s):  
Ze-Sheng Li ◽  
Bolin Li ◽  
Yifan Hu ◽  
Shaoyu Wang ◽  
Changlin Yu

Electrocatalyst for oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications (e.g., proton exchange membrane fuel cells, PEMFCs). The synthesis of highly-dispersed and high-metal-density ORR electrocatalysts...


2021 ◽  
Vol 10 (1) ◽  
pp. 79
Author(s):  
Marie Harpke ◽  
Sebastian Pietschmann ◽  
Flávio Silva Costa ◽  
Clara Gansert ◽  
Falko Langenhorst ◽  
...  

The adaptation to adverse environmental conditions can lead to adapted microbial communities that may be screened for mechanisms involved in halophily and, in this case, metal tolerance. At a former uranium mining and milling site in Seelingstädt, Germany, microbial communities from surface waters and sediment soils were screened for isolates surviving high salt and metal concentrations. The high salt contents consisted mainly of chloride and sulfate, both in soil and riverbed sediment samples, accompanied by high metal loads with presence of cesium and strontium. The community structure was dominated by Chloroflexi, Proteobacteria and Acidobacteriota, while only at the highest contaminations did Firmicutes and Desulfobacterota reach appreciable percentages in the DNA-based community analysis. The extreme conditions providing high stress were mirrored by low numbers of cultivable strains. Thirty-four extremely halotolerant bacteria (23 Bacillus sp. and another 4 Bacillales, 5 Actinobacteria, and 1 Gamma-Proteobacterium) surviving 25 to 100 mM SrCl2, CsCl, and Cs2SO4 were further analyzed. Mineral formation of strontium- or cesium-struvite could be observed, reducing bioavailability and thereby constituting the dominant metal and salt resistance strategy in this environment.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Gabriela Mota ◽  
José Vitor C. do Carmo ◽  
Camila B. Paz ◽  
Gilberto D. Saraiva ◽  
Adriana Campos ◽  
...  

The effects of the metal incorporation into hydroxyapatites on the deactivation behavior of the solids were examined in the esterification of glycerol (EG) reaction. The introduction of Cu, Co, or Ni ions by ion exchange in calcium-deficient hydroxyapatites resulted in active catalysts for the EG reaction. The metal contents were varied from 2.0 to 17.0%, providing better performances at rather high metal contents. Part of metal species existed in the hydroxyapatite lattice structure and also as isolated Cu2+, Ni2+, and Co2+ entities on the surface, as shown by XPS and EPR. The effects of the reaction temperature, reaction time, and glycerol to acetic acid molar ratios were deeply investigated. The spent solids used in this study were characterized by XRD, FTIR, SEM-EDS, chemical analyses, EPR, and XPS. The Cu2+–OH acid pairs could promote a superior catalytic performance of Cu-containing hydroxyapatites due to the resistance of these solids against leaching of the active species, which is even better than those of Co and Ni-containing counterparts with high metal contents. Cu into hydroxyapatite had a good reusability and long-term utilization for five consecutive cycles of 24 h under a glycerol to acetic acid molar ratio of 0.25 at 80 °C, and longer reaction times provide triacetin formation. This was due to the fact that Cu was stabilized by interacting with Ca, PO4, and OH sites into the hydroxyapatite lattice, being highly active for the EG reaction. The results also revealed that isolated Cu2+ sites played an important role in enhancing the glycerol conversion, intrinsically due to the Cu-containing hydroxyapatites ability to avoid strong adsorption of glycerol oligomers on the catalytic sites.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Rosendo Mendoza ◽  
Julián Martínez ◽  
Maria Carmen Hidalgo ◽  
Maria José Campos-Suñol

The study area is located in the old mining district of Linares–La Carolina (southeastern Spain), the largest global producer of lead between 1875 and 1920. The selected environmental liability is the dam of the Federico mine and the waste that was generated during the flotation process. Geophysical techniques were applied along the slope of the dam, specifically ERT and IP. In total, 26 waste samples were taken along the entire slope of the dam, in which a high metal(oid) content was identified, sometimes much higher than the reference levels established by European and regional legislation for contaminated soils. The concentrations of Pb, As, and Ba stood out, with mean values of 4863 mg.kg−1, 89 mg.kg−1, and 794 mg.kg−1, respectively. Univariate and multivariate statistical analysis could characterize the distribution of the contents of the different elements along the slope, defining the associations and dispersion patterns of the metal(oid)s in the interior structure of the mine wastes. With the results of the Pb content (the most abundant metal in mineral paragenesis), a mathematical model was obtained by linear regression that related the variability of this cation with the variation in electrical resistivity and chargeability obtained by geophysical techniques.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fang Dong ◽  
Mingjie Wu ◽  
Zhangsen Chen ◽  
Xianhu Liu ◽  
Gaixia Zhang ◽  
...  

AbstractRechargeable zinc-air batteries (ZABs) are currently receiving extensive attention because of their extremely high theoretical specific energy density, low manufacturing costs, and environmental friendliness. Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis. In this work, general principles for designing atomically dispersed M-N-C are reviewed. Then, strategies aiming at enhancing the bifunctional catalytic activity and stability are presented. Finally, the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined. It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3302
Author(s):  
Sanha Jang ◽  
Kyeongmun Park ◽  
Sehwan Song ◽  
Haksoo Lee ◽  
Sungkyun Park ◽  
...  

In the present study, oyster shells, a cause of environmental pollution, were employed effectively to synthesize hydroxyapatite (HAP) by facile oxidation and phosphorylation. The ability of HAP to adsorb various metal cations and inhibit bacterial growth was validated. The biomass-derived HAP catalyst exhibited high metal cation adsorption in water at room temperature and under various acidic conditions (M = Cr, Mn, Ni, Cu, Cd, Ba, and Pb). HAP was demonstrated to have a maximum removal efficiency of 92.8% for the heavy metal Pb. Even under different pH conditions, HAP was demonstrated to be effective for the removal of three harmful heavy metals, Cr, Cd, and Pb, with a particularly high removal efficiency demonstrated for Pb under all conditions (average removal efficiency of Cr: 63.0%, Cd: 59.9%, and Pb: 91.6%). In addition, HAP had a significant influence on phosphate ion adsorption in aqueous solution, eliminating 98.1% after 3 min. Furthermore, biomass-derived HAP was demonstrated to have significant antibacterial activity against E. coli and S. aureus (5 mM: 74% and 78.1%, 10 mM: 89.6% and 96.0%, respectively).


2021 ◽  
Vol 22 (22) ◽  
pp. 12300
Author(s):  
Su-Jeong Bak ◽  
Sun-I Kim ◽  
Su-yeong Lim ◽  
Taehyo Kim ◽  
Se-Hun Kwon ◽  
...  

We demonstrated highly efficient oxygen reduction catalysts composed of uniform Pt nanoparticles on small, reduced graphene oxides (srGO). The reduced graphene oxide (rGO) size was controlled by applying ultrasonication, and the resultant srGO enabled the morphological control of the Pt nanoparticles. The prepared catalysts provided efficient surface reactions and exhibited large surface areas and high metal dispersions. The resulting Pt/srGO samples exhibited excellent oxygen reduction performance and high stability over 1000 cycles of accelerated durability tests, especially the sample treated with 2 h of sonication. Detailed investigations of the structural and electrochemical properties of the resulting catalysts suggested that both the chemical functionality and electrical conductivity of these samples greatly influence their enhanced oxygen reduction efficiency.


2021 ◽  
Author(s):  
Yue Yin ◽  
Kun Wang ◽  
Miaomiao Chen ◽  
Xiaoquan Mu ◽  
Bo Li ◽  
...  

Abstract In this study, we examined the influence of soil properties (pH, total potassium (TK), available potassium (AK), total nitrogen (TN), total phosphorus (TP), available potassium (AP), cation exchange capacity (CEC), and soil organic carbon (SOC)), and metals (Cd, Pb, Cu, and Zn) on the density, diversity, and species composition of earthworms in the Hebei Province, North China. In total, 535 earthworms were collected from 20 sites in the study area, and belonged to three families, six genera, and ten species. Amynthas hupeiensis (39.4%) and Drawida gisti (37.8%) were the dominant species. The correlations between soil variables and earthworm composition determined using redundancy analysis indicated that SOC, TK, and AK enhanced earthworm density (total, adult, and juvenile) and species (A. hupeiensis and D. gisti) abundances. Earthworm composition remained unaffected by the metals (Cd and Pb) in the uncontaminated sites; in contrast, species were absent in areas with high metal concentrations (S19 and S20). Soil TN content was negatively and positively related to Shannon and Peilou indexes (p<0.05), respectively, indicating that TN may be pivotal in influencing earthworm diversity and species evenness. Overall, the soil properties such as K, SOC, and TN were the key variables affecting earthworm density, diversity, and species dominance.


2021 ◽  
Vol 159 ◽  
pp. 105336
Author(s):  
Li-Tao Wang ◽  
Yu-Yang Hu ◽  
Lu-Hai Wang ◽  
Ya-Kun Zhu ◽  
Hua-Jie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document