waste printed circuit boards
Recently Published Documents


TOTAL DOCUMENTS

572
(FIVE YEARS 215)

H-INDEX

52
(FIVE YEARS 12)

2022 ◽  
Vol 178 ◽  
pp. 106018
Author(s):  
Huichao Chu ◽  
Can Qian ◽  
Bingyang Tian ◽  
Shiyue Qi ◽  
Jia Wang ◽  
...  

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Yu-Fong Huang ◽  
Szu-Ling Chou ◽  
Shang-Lien Lo

AbstractRecycling of waste printed circuit boards (PCBs) has attracted increasing attention because of its high annually produced amount and high content of gold. In this study, gold recovery from waste PCBs was carried out by using the processes including microwave pyrolysis, acid leaching, solvent extraction and oxidative precipitation. The leaching efficiency of copper was approximately 95% when using a lixiviant composed of sulfuric acid and hydrogen peroxide, and the leaching efficiencies of gold were approximately 59, 95 and 95% by using thiourea, thiosulfate and aqua regia, respectively. The gold ions contained in the leachate previously produced by the leaching processes were not satisfactorily extracted by using organic solvents including di-(2-ethylhexyl)phosphoric acid, tributyl phosphate, dibutyl carbitol and trioctylamine, so the leachate was decided to bypass solvent extraction and directly apply to the oxidative precipitation process. By using the oxidants of hydrogen peroxide and perchloric acid, the precipitation efficiencies of gold were approximately 95 and 99%, and the final recovery rates were approximately 90 and 93%, respectively. The high recovery rates of gold can be attributable to the use of microwave pyrolysis that prevents the loss of gold caused by shredding and grinding processes. In addition, perchloric acid can provide higher selectivity for gold recovery than hydrogen peroxide. The maximum processing capacity of microwave pyrolysis of waste PCBs would be approximately 1.23 kg. The gold recovered from 1 t of waste PCBs can be sold for approximately USD 10,000, and thus the return on investment can be as high as approximately 1400%.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna HOŁDA ◽  
Aldona KRAWCZYKOWSKA

Technological innovations and increased demand for electronic devices resulted in production of more and more waste with highmetal content. Worldwide, 50 million tons of WEEE (Waste from Electrical and Electronic Equipment) are generated each year. Giventhe metal content present in electrical waste (e-waste), it is considered to be an urban mine and, if properly treated, can serve as analternative secondary source of metals. Waste printed circuit boards (WPCBs) that constitute approx. 3-5% of WEEE by weight areof particular importance. They contain, on average, 30-40% of metals by weight, with higher purity than in minerals. With environmental and economic benefits in mind, increasing attention is being paid to the development of processes to recover metals and othervaluable materials from WPCBs. The research presented in the article aimed at assessing the usefulness of the biotechnological methodfor leaching of selected metals from e-waste. The results indicate that it is possible to mobilize metals from WPCBs using microorganisms such as Acidithiobacillus ferroxidans bacteria 


Author(s):  
Eleazar Salinas-Rodríguez ◽  
Juan Hernández-Ávila ◽  
María Isabel Reyes-Valderrama ◽  
Ventura Rodríguez-Lugo ◽  
Justo Fabián Montiel-Hernández ◽  
...  

This lab-scale experimental study presents a novel combined hydrometallurgical and electrochemical process for gold and non-precious metals (Cu, Ni, Pb and Zn) recovery, from waste printed circuit boards (PCB´s). First, a leaching of pins from PCB´s has been carried out and complete gold extraction was obtained using H2SO4 0.5 M (pH ≈ 1.5)/O2 (1 atm) in the temperature range from 288 to 343 K. The activation energies found showed values of 97.2 kJ∙mol-1, 86 kJ∙mol-1 and 93.6 kJ∙mol-1 for Cu, Ni and Zn respectively. Afterwards, leaching liquor was treated electrochemically in several conditions: selective Cu and Pb removal was performed at pH 1.5 and Ni and Zn removal was also obtained when pH increased to 5. All processes involved here are friendly, and even, final liquor could be reutilized.


2021 ◽  
Vol 5 (1) ◽  
pp. 56
Author(s):  
Dimitrios Vlasopoulos ◽  
Paschalis Oustadakis ◽  
Styliani Agatzini-Leonardou ◽  
Petros Tsakiridis ◽  
Emmanouella Remoundaki

The current study presents an effort to develop a sustainable hydrometallurgical process for the recovery of copper from waste printed circuit boards (PCBs) to be applied at local small to medium industrial units. The process aims to separate and recover copper from filter dust produced during the crushing of PCBs using a hammer mill in a recycling facility. Due to the high plastic content in the dust (approximately 30% w/w), the metal fraction was separated gravimetrically, and the material originated consisted mainly of Cu (23.8%), Fe (17.8%), Sn (12.7%), Pb (6.3%), Zn (3.4%), Al (3.3%), Mn (1.6%), and Ni (1.5%). Prior to copper recovery, the dust was leached with HCl as a pretreatment step. During this step, more than 80% of iron, zinc, and tin were leached out. The resulting solid consisted mainly of Cu (37.6%) and Fe (10.7%), leading to a copper enrichment of around 60% in the powder. The leaching of copper was conducted in a two-step process using H2SO4 as a leaching agent with the addition of H2O2 as an oxidizing agent. The experimental conditions had low energy requirements (no heating or agitation needed). The leaching of Cu reached 98%. Despite the pretreatment step, the concentration of other metals (Fe, Zn, Ni) in the pregnant solution was too high to proceed to electrowining. Therefore, the organic solvent ACORGA M5640 was selected for the extraction of copper from the pregnant solution. The extraction was conducted in two stages at pH equilibrium 1.5, and the loaded organic phase was stripped with HCl in two steps. The strip liquor was suitable for electrowinning.


Sign in / Sign up

Export Citation Format

Share Document