Analytical Solutions for Rumor Spreading Dynamical Model in a Social Network

2015 ◽  
Vol 4 (1) ◽  
Author(s):  
R. Fallahpour ◽  
S. Chakouvari ◽  
H. Askari

AbstractIn this paper, Laplace Adomian decomposition method is utilized for evaluating of spreading model of rumor. Firstly, a succinct review is constructed on the subject of using analytical methods such as Adomian decomposion method, Variational iteration method and Homotopy Analysis method for epidemic models and biomathematics. In continue a spreading model of rumor with consideration of forgetting mechanism is assumed and subsequently LADM is exerted for solving of it. By means of the aforementioned method, a general solution is achieved for this problem which can be readily employed for assessing of rumor model without exerting any computer program. In addition, obtained consequences for this problem are discussed for different cases and parameters. Furthermore, it is shown the method is so straightforward and fruitful for analyzing equations which have complicated terms same as rumor model. By employing numerical methods, it is revealed LADM is so powerful and accurate for eliciting solutions of this model. Eventually, it is concluded that this method is so appropriate for this problem and it can provide researchers a very powerful vehicle for scrutinizing rumor models in diverse kinds of social networks such as Facebook, YouTube, Flickr, LinkedIn and Tuitor.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Aydin Secer

We put into practice a relatively new analytical technique, the homotopy decomposition method, for solving the nonlinear fractional coupled-Korteweg-de-Vries equations. Numerical solutions are given, and some properties exhibit reasonable dependence on the fractional-order derivatives’ values. The fractional derivatives are described in the Caputo sense. The reliability of HDM and the reduction in computations give HDM a wider applicability. In addition, the calculations involved in HDM are very simple and straightforward. It is demonstrated that HDM is a powerful and efficient tool for FPDEs. It was also demonstrated that HDM is more efficient than the adomian decomposition method (ADM), variational iteration method (VIM), homotopy analysis method (HAM), and homotopy perturbation method (HPM).


2015 ◽  
Vol 37 ◽  
pp. 320
Author(s):  
Mehdi Abedi-Varaki ◽  
Shahram Rajabi ◽  
Vahid Ghorbani ◽  
Farzad Hosseinzadeh

In this study by using the Homotopy Analysis Method (HAM) obtained approximate solutions for the space and time-fractional telegraph equations. In Caputo sense (Yildirim, 2010)these equations considered. Examples are solved and the obtained results show to be more accurate than Adomian Decomposition Method (ADM) and are more efficient and commodious.


2009 ◽  
Vol 64 (11) ◽  
pp. 685-690 ◽  
Author(s):  
Esmail Babolian ◽  
Jamshid Saeidian ◽  
Mahmood Paripour

Although the homotopy analysis method (HAM) is, by now, a well-known analytic method for handling functional equations, there is no general proof of its applicability to all kinds of equations. In this paper, by using this method to solve equal-width wave (EW) and modified equal-width wave (MEW) equations, we have made a new contribution to this field of research. Our goal is to emphasize on two points: one is the efficiency of HAM in handling these important family of equations and its superiority over other analytic methods like homotopy perturbation method (HPM), variational iteration method (VIM), and Adomian decomposition method (ADM). The other point is that although the considered two equations have different nonlinear terms, we have used the same auxiliary elements to solve them.


2010 ◽  
Vol 2010 ◽  
pp. 1-16
Author(s):  
Sh. Sadigh Behzadi

A generalized Fisher's equation is solved by using the modified Adomian decomposition method (MADM), variational iteration method (VIM), homotopy analysis method (HAM), and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series whose components are computed easily. The existence, uniqueness, and convergence of the proposed methods are proved. Numerical example is studied to demonstrate the accuracy of the present methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Saeed Ahmed ◽  
Muhammad Kalim

We employed different iteration methods like Homotopy Analysis Method (HAM), Adomian Decomposition Method (ADM), and Variational Iteration Method (VIM) to find the approximate solution to the Zabolotskaya-Khokhlov (ZK) equation. Iteration methods are used to solve linear and nonlinear PDEs whose classical methods are either very complex or too limited to apply. A comparison study has been made to see which of these methods converges to the approximate solution rapidly. The result revealed that, amongst these methods, ADM is more effective and simpler tool in its nature which does not require any transformation or linearization.


Author(s):  
Ahmed A. Hamoud ◽  
Ali Dhurgham Azeez ◽  
Kirtiwant P. Ghadle

<div>This paper mainly focuses on the recent advances in the some approximated methods for solving fuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition method, variational iteration method and homotopy analysis method. We converted fuzzy Volterra-Fredholm integral equation to a system of Volterra-Fredholm integral equation in crisp case. The approximated methods using to find the approximate solutions of this system and hence obtain an approximation for the fuzzy solution of the fuzzy Volterra-Fredholm integral equation. To assess the accuracy of each method, algorithms with Mathematica 6 according is used. Also, some numerical examples are included to demonstrate the validity and applicability</div><div>of the proposed techniques.</div>This paper mainly focuses on the recent advances in the some approximated methods for solvingfuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition method, variational iterationmethod and homotopy analysis method. We converted fuzzy Volterra-Fredholm integral equation to asystem of Volterra-Fredholm integral equation in crisp case. The approximated methods using to find theapproximate solutions of this system and hence obtain an approximation for the fuzzy solution of the fuzzyVolterra-Fredholm integral equation. To assess the accuracy of each method, algorithms with Mathematica 6according is used. Also, some numerical examples are included to demonstrate the validity and applicabilityof the proposed techniques.


Sign in / Sign up

Export Citation Format

Share Document