scholarly journals Analysis of Bifurcation and Chaos of the Size-dependent Micro–plate Considering Damage

2019 ◽  
Vol 8 (1) ◽  
pp. 461-469 ◽  
Author(s):  
Xiumei Wang ◽  
Jihai Yuan ◽  
Haorui Zhai

Abstract In this research, nonlinear dynamics and characteristics of a micro–plate system under electrostatic forces on both sides are studied. A novel model, which takes micro-scale effect and damage effect into account, is established on the basis of the Talreja’s tensor valued internal state damage model and modified couple stress theory. According to Hamilton principle, the dynamic governing equations of the size-dependent micro–plate are derived by variational method and solved via Galerkin method and the fourth order Runge-Kutta method. The effects of damage variable and material length scale parameter on bifurcation and chaos of the micro–plate system are presented with numerical simulations using the bifurcation diagram, Poincare map. Results provide a theoretical basis for the design of dynamic stability of electrically actuated micro- structures.

2017 ◽  
Vol 22 (1) ◽  
pp. 55-86 ◽  
Author(s):  
Mohammad Arefi ◽  
Masoud Kiani ◽  
Ashraf M Zenkour

The present work is devoted to the free vibration analysis of elastic three-layered nano-/micro-plate with exponentially graded core and piezomagnetic face-sheets using the modified couple stress theory. To capture size-dependency for a nano-/micro-sized rectangular plate, the couple stress theory is used as a non-classical continuum theory. The rectangular elastic three-layered nano-/micro-plate is resting on Pasternak’s foundation. The present model contains one material length scale parameter and can capture the size effect. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on the modified couple stress theory and first-order shear deformation theory. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually the natural frequency is scrutinized for different side length ratio, thickness ratio, inhomogeneity parameter, material length scale, and parameters of foundation numerically.


Sign in / Sign up

Export Citation Format

Share Document