scholarly journals Assessment of Bank Erosion, Accretion and Channel Shifting Using Remote Sensing and GIS: Case Study – Lower Course of the Bosna River

2016 ◽  
Vol 35 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Novica Lovric ◽  
Radislav Tosic

Abstract River bank erosion, accretion and lateral channel migration are the most important geomorphological processes, which attract a great deal of attention from river engineering scientist over the last century. in the presented study, we assessed how the river’s shape and position have changed during 1958-2013 period using remote sensing and GIS. We have identified that the total area of bank erosion during given period equalled 8.3430 km2, of which 3.2593 km2 were on the left bank and 5.0837 km2 on the right bank. The total area of bank accretion from 1958 to 2013 equalled 10.7074 km2, of which 5.4115 km2 was on the left bank and 5.2958 km2 on the right bank. The Bosna riverbed average movement in the period 1958-2013 was established in the amount of 132.4 m. During this period, the average lateral channel migration was 2.5 m per year. The data presented here are significant for practical issues such as predicting channel migration rates for engineering and planning purposes, soil and water management.

Author(s):  
D. Neupane ◽  
P. Gyawali ◽  
D. Tamang

<p><strong>Abstract.</strong> Channel migration becomes the main characteristic of major rivers of Mohana-Macheli watershed of western Nepal. Study of river channel migration of major rivers of watershed using freely available remote sensing show that the channel has shifted to as high as 1000 meters from the original river path over the span of 9 years (2009–2017). The channel migration directly affects the land use and it has direct effect on the flood plain settlements of the study area. Cultivation of sugarcane in sand area is one of the mitigating measures of flood effects and prevent river bank erosion. The study shows that the area of sand is changing disproportionately in the region. This paper presents an enhanced change detection method of river channel migration using remotely sensed images and identification of sand area using classification and interpretation technique.</p>


2018 ◽  
Vol 40 ◽  
pp. 03013 ◽  
Author(s):  
Alessandra Crosato ◽  
José Bonilla-Porras ◽  
Arthur Pinkse ◽  
Tsegaye Yirga Tiga

Long series of groynes are built from both river sides to narrow river channels and prevent bank erosion with the aim to improve the conditions for inland navigation and prevent lateral channel migration. Single groynes or short series of groynes are built to impede local bank erosion, deviate the water flow, free an intake or fix the position of migrating bars at certain locations. These structures divert the flow towards the opposite river side where channel bed erosion increases the risk of bank failure. Flow and river bed adaptation have been extensively studied, especially for long series of groynes. Instead, studies dealing with opposite bank erosion caused by single or short series of groynes are still lacking. We investigated this phenomenon in the laboratory and using 2D numerical models with LES. This paper shows some preliminary results.


2021 ◽  
pp. 499-512
Author(s):  
Masjuda Khatun ◽  
Sk Mujibar Rahaman ◽  
Sanjoy Garai ◽  
Pulakesh Das ◽  
Sharad Tiwari

2014 ◽  
Vol 94 (4) ◽  
pp. 49-58 ◽  
Author(s):  
Radislav Tosic ◽  
Novica Lovric ◽  
Slavoljub Dragicevic

The river channel dynamics are result of the complex interaction between natural and human impact. In the presented study, we assessed spatial and temporal dynamics of Bosna river channel migration during 2001-2013 period using orthophoto images and GIS. We have identified that the total area of bank erosion during given period equaled 2.8695 km2, of which 1.2178 km2 were on the left bank and 1.6516 km2 on the right bank. The total area of bank accretion from 2001 to 2013 equaled 2.6841 km2, of which 1.2864 km2 was on the left bank and 1.3977 km2 on the right bank. The Bosna riverbed average movement in the period 2001-2013 was established in the amount of 60.7 m. During this period, the average lateral channel migration was 5.05 m per year. Lateral migration of the Bosna River has caused serious problems: disappearance of arable land, forests, pastures and meadows, economic loss due to the reduction of agricultural. Using statistical analysis of a land use structure changes along the lower part of Bosna River, we obtained the results which show significant lost in arable land. According to results, 42.3 ha of arable land, 171.9 ha forests and 31.8 ha pastures and meadows were lost during 2001-2013 period. The data presented here are significant for practical issues such as predicting channel migration rates for engineering and planning purposes, soil and water management.


2021 ◽  
Author(s):  
Md. Hasanuzzaman ◽  
Biswajit Bera ◽  
Aznarul Islam ◽  
Pravat Kumar Shit

Abstract The process of riverbank erosion (RE) is often accelerated by natural events and anthropogenic activities leading to the transformation of this natural process to natural hazard. The present study aims to estimate bank erosion rate and prediction of the lower Ganga River in India using digital shoreline analysis system (DSAS) model. The prediction of RE susceptibility mapping has been generated using three ensemble models such as DSAS, bank erosion hazard index (BEHI), and river embankment breaching vulnerability index (REBVI). For the study satellite images and field data (bank materials, geotechnical parameters, embankment structure, hydraulic pressure etc.) have been used to recognize the river bank position and BEHI and REBVI scores. During 1973-2020, the average bank erosion and accretion rate was found 0.059 km/y and 0.022 km/y at the left bank while 0.026 km/y and 0.046 at the right bank respectively. The prediction results illustrated that the very high vulnerable condition of 06 villages and 21 villages for high vulnerable due to left bank erosion. BEHI and REBVI scores have been the significant performance of understanding and identification of RE vulnerable areas. The long-term (2020-2045) average erosion and deposition rate was predicted at 0.135 km/y and 0.024 km/y at the left bank and 0.043 km/y and 0.045 km/y at the right bank respectively. The prediction accuracy and validation of models were measures by statistical techniques such as student’s t-test, RMSE, and R2 values. This study would be help planners and decision makers the spatial guidelines to understanding future trends of bank erosion and shifting rate for land-use planning and management strategies to protect riverbank.


2018 ◽  
Vol 37 (3) ◽  
pp. 87-95 ◽  
Author(s):  
Mohammad Maruf Billah

Abstract The Padma river is widely known for its dynamic and disastrous behaviour, and the river has been experiencing intense and frequent bank erosion and deposition leading to the changes and shifting of bank line. In this paper, a time series of Landsat satellite imagery MSS, TM and OLI and TIRS images and are used to detect river bank erosion-accretion and bank line shifting during the study period 1975–2015. This study exhibits a drastic increase of erosion and accretion of land along the Padma river. The results show that from 1975 to 2015, the total amount of river bank erosion is 49,951 ha of land, at a rate of 1,249 ha a−1 and the total amount of accretion is 83,333 ha of land, at a rate of 2,083 ha a−1. Throughout the monitoring period, erosion-accretion was more pronounced in the right part of the river and bank line had been shifting towards the southern direction. The paper also reveals that the total area of islands had been increased significantly, in 2015 there was about 50,967 ha of island area increased from 20,533 ha of island area in 1975, and the results evidence consistency of sedimentation in the river bed.


Sign in / Sign up

Export Citation Format

Share Document