Studies on nucleation and crystal growth kinetics of uranium(IV) oxalate

2020 ◽  
Vol 108 (3) ◽  
pp. 185-193
Author(s):  
Chuanbo Li ◽  
Yongzhi Ning ◽  
Taihong Yan ◽  
Weifang Zheng

AbstractAn improved apparatus is used for nucleation measurements according to Nielsen’s method. A new method is proposed to calculate the dilution ratio N of the reaction solution during nucleation rate determination. With the rule, when the initial apparent supersaturation ratio S′ = f(N) in the dilution tank is controlled from 1.2 to 2.7, crystal nucleus dissolving and secondary nucleation can be avoided satisfactorily. Experiments are realized by varying the supersaturation ratio from 26.0 to 297.5 and temperature from 30 °C to 50 °C. Uranium(IV) oxalate is precipitated by mixing equal volumes of tetravalent uranium nitrate and oxalic acid solution. The experimental results show that the nucleation rate of uranium(IV) oxalate in the supersaturation range as show above is characterized by the primary homogeneous mechanism and can be expressed by the equation ${R_N} = {A_N}{\rm{exp}}( - {E_a}/RT){\rm{exp}}[ - B/{({\rm{ln }}S)^2}],$ where AN = 1.9 × 1027 m−3s−1, Ea = 71.2 kJ mol−1, and B = 34.3. The crystal growth rate can be expressed by the equation $G(t) = {k_g}{\rm{exp(}} - {E^{\prime}_a}/RT{\rm{)(}}c - {c_{{\rm{eq}}}}{{\rm{)}}^g},$ where kg = 7.1 × 105 (mol/L)−0.98 (m/s), ${E^{\prime}_a} = 33.1 \ {\rm{ kJ \ mo}}{{\rm{l}}^{ - 1}},$ and g = 0.98. The results indicate that the crystal growth of tetravalent uranium(IV) oxalate is controlled by the BCF model.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chuanbo Li ◽  
Bo Wang ◽  
Xiang Li ◽  
Taihong Yan ◽  
Weifang Zheng

Abstract A new method is developed to calculate the dilution ratio N of the two reactant solutions during nucleation rate determination. When the initial apparent supersaturation ratio S N  = f(N) in the dilution tank is controlled between 1.66 and 1.67, the counted nuclei is the most, both nuclei dissolving and secondary nucleation avoided satisfactorily. Based on this methoed, Plutonium(IV) oxalate is precipitated by mixing equal volumes of tetravalent plutonium nitrate and oxalic acid solutions. Experiments are carried out by varying the supersaturation ratio from 8.37 to 22.47 and temperature from 25 to 50 °C. The experimental results show that the nucleation rate of plutonium(IV) oxalate in the supersaturation range cited above can be expressed by the equation R N  = A N exp(−E a /RT)exp[−B/(ln S)2], where A N  = 4.8 × 1023 m−3 s−1 , and E a  = 36.2 kJ mol−1, and B = 20.2. The crystal growth rate of plutonium(IV) oxalate is determined by adding seed crystals into a batch crystallizer. The crystal growth rate can be expressed by equation G(t) = k g exp(−E’ a /RT) (c − c eq) g , where k g  = 7.3 × 10−7 (mol/L)−1.1(m/s), E’ a  = 25.7 kJ mol−1, and g = 1.1.


2013 ◽  
Vol 215-216 ◽  
pp. 903-912 ◽  
Author(s):  
Mary Hanhoun ◽  
Ludovic Montastruc ◽  
Catherine Azzaro-Pantel ◽  
Béatrice Biscans ◽  
Michèle Frèche ◽  
...  

2019 ◽  
Vol 42 (7) ◽  
pp. 1519-1524 ◽  
Author(s):  
Natchanok Chaisongkram ◽  
Somchai Maosoongnern ◽  
Adrian E. Flood

2010 ◽  
Vol 22 (22) ◽  
pp. 6044-6055 ◽  
Author(s):  
Grethe Vestergaard Jensen ◽  
Martin Bremholm ◽  
Nina Lock ◽  
G. Roshan Deen ◽  
Torben R. Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document